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Editorial

Cells in a living organism must communicate with each 
other through continuously sending and receiving messages.  
G-protein coupled receptors (GPCRs) are the largest family of 
communicating molecules at the cell surface.  They transmit 
diverse extracellular signals, ranging from light and small 
chemical hormones to large peptide and protein hormones, 
and as such they play crucial roles in numerous physiologi-
cal and pathological processes.  More importantly, GPCRs 
are the most successful class of drug targets that are relevant 
to many major diseases, including cancer, heart failure, and 
inflammatory diseases.  Over 50% of currently used drugs are 
targeted to GPCRs.  However, these drugs target only 50–60 
GPCRs, leaving the majority of human GPCRs, exceeding 800, 
unexplored for drug discovery.  Given the prominent roles of 
GPCRs in biology and their successful track records as drug 
targets, GPCRs have become a hot frontier in basic research of 
life science and therapeutic discovery of translational medi-
cines.

In this special issue, there are nine exciting reviews that 
cover a broad scope of GPCR structures, biology, diseases, and 
drug discovery.  Among them, four reviews are dedicated to 
GPCR structures.  Over the last few years, we have witnessed 
a revolution in Class A GPCR structural biology.  Rhodopsin 
is the founding member of the GPCR family and its signaling 
mechanism is a paradigm for many other GPCRs.  The crystal 
structure of bovine rhodopsin was first solved in 2000 and 
since then structures of rhodopsin have been solved in several 
functional states, including the inactivated dark state, partially 
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active opsin, and the fully active state that is bound with a 
Gαt peptide.  ZHOU, MELCHER, and XU review the signal-
ing mechanisms gained from rhodopsin structures and com-
pare these mechanisms to other members of Class A GPCRs, 
most notably β2-adrenergic receptor (β2AR)[1].  Class B and 
C GPCRs distinguished themselves from Class A GPCRs by 
having a large extracellular domain for binding of ligands.  
Compared to Class A GPCRs, structure determination for the 
full-length receptors of other families of GPCRs is lagging 
behind.  However, structures for a half dozen of Class B and 
C GPCR extracellular domains (ECDs) in complex with their 
respective ligands have been determined.  The structures and 
ligand binding mechanisms of Class B and Class C GPCRs will 
be reviewed by the XU and LIU groups, respectively[2, 3].  The 
rapid explosion of Class A GPCR structures is owed to tech-
nology development in various stages of structure determina-
tion; including protein expression, purification, crystallization, 
and X-ray diffraction, for which a thorough review is provided 
by ZHAO and WU[4].

Following the reviews of GPCR structures, five reviews 
are focused on GPCR biology, diseases, and drug discovery.  
β2AR is a prototype of GPCRs, and in parallel to rhodopsin, it 
has been serving as a model for studying other GPCRs.  WOO 
and XIAO review the signaling mechanisms by β-adrenergic 
receptor subtypes that provide a basis for developing selective 
biased β2 agonists for the treatment of heart failure[5].  Moving 
from heart to immune systems, YE and SUN review the role of 
GPCRs in inflammation processes from chemotaxisis to tran-
scriptional regulation of inflammation programs[6].  Lappano 
and Maggiolini provide a systematic review on the relation-
ship of cancers with various subfamilies of GPCRs, which may 
serve as the basis for developing novel pharmacological inter-
ventions for cancers[7].  A large number of GPCRs are orphan 
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receptors whose ligand remains unknown.  Despite missing 
cognate ligands, many orphan GPCRs are known to play 
important physiological functions, mostly from genetic knock-
out studies.  LIU and colleagues provide a thorough review on 
different class of orphan nuclear receptors, their functions, and 
possible strategies for identification of endogenous ligands[8].  
Finally, as one of the most important drug targets, GPCRs are 
widely pursued by both academic and industrial research for 
drug discovery.  ZHANG and XIE provide a comprehensive 
review on methods of GPCR drug discovery, including vari-
ous ligand binding and cell-based functional assays, many of 
which are tool kits for basic research as well as drug discovery 
for GPCRs[9].

Followed the waves of technological advances and inter-
disciplinary approaches in modern biological research, the 
field of GPCRs is evolving rapidly into a new phase of exciting 
progresses.  With a rich history of biology and drug discov-
ery, GPCR research is expected to continue to be a dominant 
source of innovative medicines for the 21st Century.  We hope 
that the collection of these nine exciting reviews will pro-
vide a window into this new era of GPCR research and drug 
discovery.  
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Introduction
Rhodopsin, a visual pigment found in the rod photoreceptor 
cells of the retina, is responsible for converting photons into 
chemical signals that stimulate biological processes in the ner-
vous systems of humans and other vertebrate animals, allow-
ing them to sense light[1].  Rhodopsin is a member of class A of 
the GPCR superfamily[2], which is a large group of cell surface 
signaling receptors that transduce extracellular signals into 
intracellular pathways through the activation of heterotri-
meric G proteins.  The human GPCR superfamily, comprised 
of about 900 members, is involved in many aspects of human 
physiology and diseases, and it represents the most important 
protein targets for pharmaceutical drug discovery[2].  

The crystal structure of ground-state bovine rhodopsin 
containing the reverse agonist 11-cis-retinal was the first high-
resolution GPCR structure solved by X-ray crystallography[3–6].  
Recently, crystal structures have been published for both 
opsin and rhodopsin in active conformations, with or without 
the binding of a peptide derived from the C-terminal helix 
α5 of the α subunit of G protein transducin[7–11].  The crystal 
structures of rhodopsin and the results of related biochemical 
and biophysical studies[12] have revealed the molecular mecha-
nisms of photoactivation and visual signal transduction, lead-
ing to a significant progress in understanding the signaling 

pathways of the entire GPCR superfamily[13].  
As the first solved GPCR crystal structure, bovine rhodop-

sin has been used as a structural template in many efforts 
of molecular modeling and in designing therapeutic drugs 
for human diseases related to GPCR signaling pathways[14].  
More recently, crystal structures have been published 
for β1-adrenergic receptor[15], A2A adenosine receptor[16], 
β2-adrenergic receptor[17–21], and the complex of β2-adrenergic 
receptor with a trimeric G protein[21].  These results have fur-
ther enriched our understanding of ligand-induced activation 
and downstream signal transduction by GPCRs.  

In this review we summarize the structural features, the 
photoactivation, and the G protein signal transduction of rho-
dopsin.

Overall structure of bovine rhodopsin
The crystal structure of inactive, 11-cis-retinal-bound bovine 
rhodopsin was first determined by Palczewski et al in 2000[3] 
and later by a few other groups[4–6].  The bovine rhodopsin 
structure features a seven-transmembrane (7TM) helix core 
architecture with three loop regions on both the extracellular 
and the cytoplasmic side of the membrane (Figure 1A and 
1B).  The N-terminus of rhodopsin, located on the extracellular 
side, consists of a two-stranded β sheet stretching from Gly4 to 
Pro11, followed by a loop region of about 24 amino acid resi-
dues (Figure 1A and 1B).  The residues Asn2 and Asn15 are 
glycosylation sites for the receptor, and mutations that replace 
these residues with alanine lower the receptor’s light-sensing 
activity[22].  The Thr4, Asn5, Thr17, Pro23, and Asn28 residues 
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in this region have been proved to be crucial for the correct 
folding of the receptor, and mutations in these residues can 
lead to autosomal dominant retinitis pigmentosa (ADRP)[23, 24].  

The second extracellular loop region (EL2), between helix 
4 and helix 5 or from Gly175 to Asn200, is the longest among 
three extracellular loop regions, and it is essential for ligand 
binding of the receptor (Figure 1C).  Biochemical data have 
shown that the interaction of EL2 with the helix bundle is 
important for the correct folding and biological function of the 
receptor[25].  The majority of this loop region, from Tyr178 to 
Ile189, forms a twisted two-stranded β sheet that is positioned 
at the opening of the ligand binding pocket, serving as a 
“lid” to block rapid exit of the ligand from the pocket (Figure 
1C).  The position of this β  sheet is stabilized by hydrophobic 
interactions between residues Tyr178, Pro180, Met183 (Leu in 
humans), Cys185, and Cys187 of EL2, and surrounding resi-
dues of the helix bundle, especially those from helices 1, 2, 3, 
and 7.  It is also stabilized by a disulfide bond between Cys187 
of the β sheet and Cys110 of helix 3, and by a hydrogen bond-
ing network among Glu181 and Tyr192 of EL2, Tyr268 of 
helix6 and a few water molecules.  Between the two strands 
of this β sheet is a salt bridge formed by Asp190 and Arg177, 
which is a key interaction for maintaining the functional con-
formation of this lid over the retinal binding site (Figure 1C)[26].  

The architecture of the 7TM domain is a common feature 
across the GPCR superfamily with many conserved resi-
dues[16–20].  Among the seven helices, helix 6, from Lys246 to 
His276 in the ground-state model, bends about 36° at Pro267, 
with both ends facing away from the core of the 7TM domain 
(Figure 1A)[3].  Upon photoactivation, the cytoplasmic end of 
this helix shifts further away from the 7TM core, and this shift 
creates a crevice in the cytoplasmic side of the receptor for 
binding the α subunit of G protein transducin[8, 11].  

The ligand binding site of rhodopsin is a pocket on the extra-
cellular side of the transmembrane bundle.  It is surrounded 
by hydrophobic residues that stabilize the polyene backbone 
of the retinal, among which are Met207, Phe208, and Phe212 
from helix 5, and Trp265 and Tyr268 from helix 6 (Figure 1A 
and 1C)[3, 4, 6].  The positions and the conformations of those 
hydrophobic residues undergo dynamic changes during the 
photoactivation of the retinal and the conformational changes 
in the receptor[7, 8, 11].  

Another important feature of this receptor is the “ionic 
lock”, a salt bridge between Arg135 of helix 3 and Glu247 of 
helix 6 (Figure 1A)[3, 4, 6].  This salt bridge blocks the G protein 
binding site of the receptor in its inactive conformation.  Upon 
photoactivation, the transmembrane bundle undergoes a con-
formational change: the cytoplasmic side of helix 6 bends fur-
ther away from the 7TM core and the ionic lock breaks, result-
ing in an opening on the cytoplasmic side of the receptor for G 
protein interaction[7, 8, 11].  

A conserved NPXXY motif on helix 7 is also common to all 
the GPCR family members based on sequence alignment and 
crystal structures[3, 16–18].  It has an important role in receptor 
activation: this motif shifts toward helix 6 and the key residue 
Tyr306 on this motif flips toward helix 6, helping breaking the 

Figure 1.  Overall structure of ground sate bovine rhodopsin and its key 
features (PDB: 1F88).  (A) The seven-transmembrane helix domain with 
the retinal in gray stick and the ligand binding pocket shown as a pink 
mesh.  Major ligand binding residues around the ligand binding pocket are 
shown as yellow sticks and are labeled.  Other features include the ionic 
lock (yellow sticks) and the NPXXY motif (orange).  (B) Two-dimensional 
sequence of bovine rhodopsin with the starting and ending residues of 
secondary structural elements indicated.  The disulfide bond connecting 
EL2 to helix 3 is shown in orange.  N, amino terminus; C, carboxyl 
terminus; EL, extracellular loop; CL, cytoplasmic loop.  (C) The ligand 
binding pocket (pink mesh) of rhodopsin with EL2 (the lid of the pocket) 
shown in dark brown.  The disulfide bond between C110 and C187 is 
labeled.  
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ionic lock and pushing helix 6 away from the transmembrane 
bundle (Figure 1A).

The C-terminus of rhodopsin is on the cytoplasmic side 
of the membrane, extending from residue Met309 at the 
C-terminal end of helix 7 to the last residue of the receptor, 
and featuring a short amphipathic helix (helix 8) perpendicu-
lar to helix 7 (Figure 1A and 1B)[3, 4, 6].  It forms hydrophobic 
interactions by its residues Phe313, Cys316, and Met317 with 
residues Leu57, Val61 of helix 1 and His65 in the loop follow-
ing helix 1, and is covalently anchored to the membrane by 
palmitoylation of residues Cys322 and Cys323 in the loop fol-
lowing helix 8.  The C-terminal loop following residue Asn326 
is disordered in all the crystal structures.  In this region there 
are serine residues Ser334, Ser338, and Ser343, whose phos-
phorylation is important for arrestin binding to terminate the 
cycle of G protein activation[27].  

The loop region CL3 between helices 5 and 6 on the cyto-
plasmic side is flexible and largely disordered in ground-

state rhodopsin crystal structures, but is structured in most 
activated rhodopsin models[8–11] (Figure 1A and 1B) .  Upon 
activation, the majority of this loop region becomes part of the 
elongated helix 5 that provides more interface for G protein 
interaction.

Ligand-induced conformational change and activation of 
rhodopsin
Retinal is one of the vitamin A compounds derived from caro-
tenoids (Figure 2A).  It is the photoactive moiety of rhodopsin 
that captures light and converts photons into chemical signals.  
Vision starts with the absorption of photons, and the photon-
triggered isomerization of the retinal from the 11-cis to the all-
trans state, followed by conformational changes in the 7TM 
domain of rhodopsin to accommodate the binding of G pro-
teins, leading to the downstream signal transduction[28].  

The ligand binding pocket of rhodopsin, with a volume of 
about 352 Å3, is located on the luminal side of the receptor 

Figure 2.  Ligand binding and conformational changes in rhodopsin.  (A) Chemical structures of 11-cis- and all-trans-retinal.  (B) 11-cis-retinal (in gray) in 
the ligand binding pocket is associated with the surrounding residues of the protein moiety (green, PDB: 1F88).  (C) Conformational changes in retinal 
and the protein moiety of rhodopsin upon photoactivation.  The photoactivated all-trans-retinal (PDB: 3PQR) is magenta and the ground-state 11-cis-
retinal (PDB: 1F88, gray) is superposed on the activated all-trans-retinal for comparison.  The protein moiety of activated rhodopsin (PDB: 3PQR) is 
dark brown.  (D) The key conformational changes in rhodopsin upon photoactivation are the outward tilting of the cytoplasmic end of helix 6 (indicated 
by the horizontal arrow), creating a crevice for G-protein binding, and the elongation of the cytoplasmic end of helix 5 (indicated by the vertical arrow) 
that provides more interface for G-protein interaction.  Green shows the ground-state conformation (PDB: 1F88), and brown shows the activated 
conformation (PDB: 3PQR).  (E) Bottom view of panel D.  
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(Figure 1A, 1C, and 2B).  Prior to photoactivation, 11-cis-retinal 
in the ligand binding pocket is covalently bound to Lys296 
of helix 7 through a Schiff base linkage.  The Schiff base is 
protonated and the linkage is stabilized by charge delocaliza-
tion over the π-electron system of the polyene backbone of the 
retinal chromophore, and by an electrostatic interaction with 
the carboxyl group of Glu113 of helix 3 (Figure 2B)[3, 4, 6].  The 
retinal in the ligand binding pocket is also stabilized by the 
surrounding hydrophobic residues including Met207, Phe208 
and Phe212 from helix 5 and Trp265 and Tyr268 from helix 6 
(Figure 2B).  The Schiff base linkage and its electrostatic inter-
action are essential for maintaining the ground-state confor-
mation of rhodopsin, and a mutation that alters either Lys296 
or Glu113 results in constitutive activation of the receptor[29].  

Upon light absorption, the π-electron system of the reti-
nal chromophore undergoes a π→π* transition that lowers 
the potential energy barrier for cis-trans isomerization.  The 
isomerization changes the retinal from a bending cis configu-
ration to a straight trans configuration.  It flips the aldehyde 
group and the C20 methyl group about 180° around the C11=C12 
double bond, and tilts the β-ionone group toward the space 
between helices 5 and 6 (Figure 2C).  The photon-induced 
cis-trans transition in the retinal leads to a sterically strained 
excited-state rhodopsin that thermally decays through a series 
of intermediates, photorhodopsin, bathorhodopsin, lumirho-
dopsin, and metarhodopsin I, and forms the active-state 
metarhodopsin II[7, 8, 11, 30–32].  During the thermal relaxation, 
the protein moiety of rhodopsin undergoes a series of con-
formational changes that lead to the formation of a G protein 
binding site on the cytoplasmic side of the 7TM bundle[7–11] 
(Figure 2D and 2E).  The major conformational changes are 
the bending of helix 6 at Pro267, and the eight-residue elonga-
tion of the C-terminus of helix 5, the addition coming from the 
CL3 loop (Figure 2D and 2E).  The bending of helix 6 results in 
the cytoplasmic end of this helix tilting away from the trans-
membrane core, and creates an opening with a diameter of 
about 14 Å[8, 10, 11].  The cytoplasmic end of helix 6 in all-trans-
retinal bound rhodopsin is about 7.7 Å away from that of the 
cis-retinal bound conformation.  The Pro267 residue of helix 
6 is highly conserved among GPCR family members, and it is 
believed that it serves as a hinge for the bending because it has 
no hydrogen bond between its backbone nitrogen atom and 
the carbonyl group of the residue one helical turn upstream.  
The elongation of the cytoplasmic side of helix 5 expands the 
interface for G protein interaction, and thus contributes the 
binding affinity of rhodopsin for the G protein transducin 
(Figure 2D and 2E).  

Rhodopsin-G protein interaction
The binding of the C-terminus of the α subunit of trans-
ducin to rhodopsin was defined by the crystal structure of 
rhodopsin in complex with a synthetic peptide, GαCT (Gα 
C-terminus), derived from the C-terminus of helix α5 of the 
Gα subunit[8, 10, 11] (Figure 3A).  The outward movement of 
helix 6 of rhodopsin breaks the ionic lock between Arg135 on 
helix 3 and Glu247 on helix 6, thus creating an opening that 

accommodates the C-terminal helix of the α subunit of trans-
ducin.  The binding of the Gα peptide on the cytoplasmic side 
of rhodopsin is largely facilitated by two sets of interactions: 
a) hydrophobic interactions between the peptide residues 
Leu341, Leu344, Val347, Leu349, and Phe350, and the recep-
tor residues Ala246, Val250, and Met253 on helix 6, Val138 
and Val139, and the backbone of Arg135 on helix 3, and Leu72 
and Leu76 on helix 2, and 6) polar interactions between the 
carbonyl groups of residues Gly348 and Lys345 of the pep-
tide, and the residues Asn310 and Q312 of helix 8 (Figure 
3A).  The binding of the α subunit of transducin to rhodopsin 
induces the exchange of GDP for GTP on the α subunit, and 
this exchange triggers the dissociation of the GTP-bound Gα 
subunit from the Gβγ dimer and the receptor.  Both the dis-
sociated GTP-bound α subunit and the βγ dimer of transducin 
then activate downstream signaling pathways[33].  

Comparison of the rhodopsin-Gα peptide structure with the 
recently published crystal structure of the β2-adrenergic recep-
tor in complex with its trimeric G protein[21] revealed notewor-
thy differences.  Helix α5 of the intact Gα subunit binds to the 
receptor in a position tilted about 38° toward helix 6 and 2 Å 
away from the bottom of the crevice relative to the position 
of the Gα peptide in the active rhodopsin-peptide complex 
(Figure 3B and 3C).  The intact G protein α subunit does not 
fit deeply in the crevice of the receptor as the peptide does, 
probably because the whole Gα subunit is much larger, and 
therefore is not able to fit in the deep crevice in the transmem-
brane bundle of the receptor.  Also in the β2-AR-G protein 
complex, helix 6 is bent outward about 26° more than that in 
the activated rhodopsin structure, and the opening of the crev-
ice is larger than that of rhodopsin, to accommodate the intact 
C-terminal helix of the Gα subunit in the β2-AR-G protein 
complex (Figure 3B and 3C).  Because the crystal structure of 
a rhodopsin-full length G protein complex is not available, we 
still do not have the whole picture of the interface of rhodop-
sin with the Gα subunit as a full length protein in the context 
of intact trimeric transducin.

Structural understanding of disease-related rhodopsin 
mutations
Rhodopsin is central to the process of vision.  Mutations in 
rhodopsin are major causes of vision diseases or disorders.  
More than 120 point mutations have been identified in human 
gene of rhodopsin, many of which lead to vision diseases 
such as ADRP and congenital stationary night blindness (see 
http://www.retina-international.org/sci-news/rhomut.htm 
for most disease-linked mutations).  Crystal structures have 
provided us molecular basis for understanding how mutations 
in rhodopsin influence the protein folding, stability and/or 
biological functions of the receptor.  

Retinal is the photoactive chromophore in rhodopsin, and is 
the key to the entire light signal transduction.  Crystal struc-
tures have revealed that 11-cis-retinal is covalently bound 
by Lys296 of helix 7 in ground state rhodopsin (Figure 2A 
and 2B).  Mutations of this retinal binding residue, K296M 
and K296E, cause severe ADRP[34].  These mutants have been 
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found to be folded properly, but constitutively activated[35].  
Substitutions of other residues interacting with or at proximity 
of retinal can change retinal binding affinity of the receptor.  It 
has been identified that mutations of those residues M44T[36], 
G114D[37], G114V[38], L125R[39], C167R[40], Y178N[41], Y178C[42], 
E181K[40], S186P[40], S186W[43], G188R[44], G188E[45], M207R[46], 
M216R[47], and M216K[48] (Lue216 in bovine), cause different 
levels of ADRP disease.  Mutations of G90D[49] and A292E[50], 
two other retinal binding residues, have been found in patients 
with congenital stationary night blindness.  

The conserved residue Pro267 is at the kink in helix 6 and 
serves as a hinge for the bending of helix 6 to create the G pro-
tein binding site at cytoplasmic side of rhodopsin.  Replace-
ment of this residue with other non-proline residues affects the 
conformation of the G protein binding site of rhodopsin and 
the kinetics of transducin activation[51, 52].  Mutations of P267L 
and P267R have been reported to cause ADRP[41, 52, 53].  

Based on the crystal structure of rhodopsin in complex with 
peptide GαCT[8, 10, 11], the binding of the α subunit of transdu-
cin to rhodopsin is facilitated by hydrophobic residues at the 
interface of the two proteins.  Cys140 in CL2 is an important 
residue at rhodopsin side for G protein binding[54].  Mutation 
C140S that lowers the hydrophobicity of the residue has been 
found associated with ADRP[45].  

Mutations of residue Cys110 to Arg, Phe, or Tyr[37, 55], or 
Cys187 to Tyr[56], have been identified in ADRP patients.  The 

conserved residues Cys110 and Cys187 forms a disulfide bond 
that constrains EL2, the lid of the ligand binding pocket, and 
is required for the biological function of the receptor (Figure 
1B)[57].  Mutations of those residues break the disulfide bond, 
thus affect the folding and biological function of the receptor.  

GPCRs are membrane proteins and their interactions with 
the phospholipid bilayer membrane have great influence on 
their physiological functions[58].  Mutations at the membrane 
interaction interface of rhodopsin can change the affinity of 
rhodopsin to the phospholipid bilayers and influence the 
functions of the receptor.  Lue46 is a hydrophobic residue at 
the membrane interaction interface of rhodopsin, and muta-
tion of L46R largely affects the membrane-receptor interaction 
and causes severe ADRP[59].  Other disease-linked mutations 
at the receptor-membrane interface are F45L[60], P53R[61], and 
V209M[45].

Some disease-causing mutations in rhodopsin occur at post-
translational modification residues including glycosylation or 
phosphorylation sites.  Glycosylation is important for correct 
folding and stability of most eukaryotic proteins.  N-terminal 
glycosylation sites of rhodopsin are located at Asn2, Thr4, 
Asn15 and Thr17, and mutations of those residues, T4K[62], 
N15S[63], and T17M[60], are responsible for ADRP.  Rhodopsin 
phosphorylation is a key step of the regulatory mechanism of 
light signal transduction.  Activated rhodopsin is phosphory-
lated by rhodopsin kinase at multiple sites in its C-terminal 

Figure 3.  Rhodopsin-G protein interface.  (A) Rhodopsin in complex with a synthetic peptide derived from helix α5 of the Gα subunit of transducin 
(PDB: 3PQR).  The rhodopsin residues interacting with the Gα peptide are labeled.  (B) Comparison of the binding mode of rhodopsin with the synthetic 
peptide and that of the β2-adrenergic receptor with intact G protein (PDB: 3SN6).  The β2-adrenergic receptor is blue and the Gα subunit is cyan.  For 
clarity, only helix α5 of the Gα subunit is shown.  (C) The whole-complex model of the β2-adrenergic receptor with intact G protein (PDB: 3SN6).  The β2-
adrenergic receptor is blue, the Gα subunit is cyan, the Gβ subunit is brown, and the Gγ subunit is pink.  RN, N-terminus of the receptor; RC, C-terminus 
of the receptor; αN, N-terminus of the Gα subunit; αC, C-terminus of the Gα subunit; βN, N-terminus of the Gβ subunit; βC, C-terminus of the Gβ subunit; 
γN, N-terminus of the Gγ subunit; γC, C-terminus of the Gγ subunit.



296

www.nature.com/aps
Zhou XE et al

Acta Pharmacologica Sinica

npg

region, and the phosphorylation facilitates the association of 
arrestin that completely terminates light signal transduction.  
Mutations of a rhodopsin kinase binding residue Arg135 to 
Gly[45], Trp[60], Pro[64], or Leu[60], and the mutation of a phospho-
rylation site Thr342 to Met, which affect phosphorylation and 
rhodopsin-arrestin interaction, lead to ADRP[65].  

Comparison of the activation of GPCRs and nuclear 
hormone receptors
Nuclear hormone receptors (NRs) and GPCRs are two differ-
ent groups of protein receptors that sense extracellular signals 
and transduce those signals to the inside of cells.  GPCRs 
transmit signals by coupling ligand-receptor interactions to 
G protein activation.  Activated G proteins then trigger the 
downstream signaling cascades in the cytoplasm to regulate 
various biological events in the cells.  In contrast, ligand bind-
ing converts NRs into transcriptional activators that directly 
bind target genes and stimulate their expression.  A typical 
nuclear receptor ligand binding domain forms a conserved 
helical sandwich fold that harbors a ligand binding pocket 
adjacent to its C-terminal activation function helix AF2.  

Ligand binding does not change the helical sandwich scaffold 
but induces the rearrangement of the receptor’s AF2 helix and 
the formation of a coactivator binding cleft for the recruit-
ment of transcriptional coactivators, which further facilitate 
the formation of transcription complexes and subsequent 
gene expression[66] (Figure 4A).  In the cascade of NR activa-
tion, the conformation of the receptor core structure remains 
unchanged.  That is a major difference from the activation of 
a GPCR, in which the core 7TM domain is rearranged upon 
ligand binding and receptor activation and the core domain 
rearrangement creates a crevice at the cytoplasmic side of the 
receptor for G protein interaction and signal transduction (Fig-
ure 4B)[10, 11, 21].  

While GPCRs and NRs are functionally comparable, the 
GPCR group has many more members than the NR family, 
and senses a wide variety of environmental signals.  It is inter-
esting that the GPCR group members, in spite of their highly 
diverse ligands, share a highly conserved 7TM core architec-
ture for ligand binding and G protein interaction, whereas the 
NRs share a conserved three-layered helix bundle for ligand 
binding and coactivator recruitment.  In summary, ligand 

Figure 4.  A comparison of the ligand-induced activation modes of GPCRs and nuclear receptors.  (A) Ligand-induced rearrangement of the C-terminal 
AF2 helix and coactivator recruitment of a peroxisome proliferator-activated receptor ligand binding domain (PPAR LBD).  At left is an apo PPAR LBD (PDB: 
1PRG)[69]; middle, the LBD upon the ligand binding-induced conformational change in the AF2 helix and the formation of the coactivator binding site 
(PDB: 1I7G)[70]; at right, the LBD upon the subsequent coactivator recruitment (PDB: 1K7L)[71].  The LBD core structure is cyan; the AF2 helix, green; and 
the coactivator motif, brown.  (B) Cartoon presentation showing that ligand activation induces conformational changes in the core domain of GPCRs but 
not in that of NRs.  Blue are the core domains of both receptors; Red are the ligands; Orange are the G protein binding to the GPCR and the coactivator 
binding to the NR.  
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binding and activation in GPCRs involve a much more exten-
sive rearrangement of the 7TM helical core than the helical 
sandwich of NRs.  

Rhodopsin as a molecular model for GPCR studies
During the long period before the second GPCR crystal 
structure was published in 2007[17, 18] , rhodopsin was the 
only GPCR crystal structure available, and it has been used 
extensively as a model for understanding the structural and 
functional characteristics of other GPCRs[67, 68].  Whereas more 
GPCR crystal structures have been published and the impor-
tance of the rhodopsin structure as a molecular template for 
modeling other GPCRs has been correspondingly diminished, 
rhodopsin still remains a prototype of the GPCR superfamily 
and a model system for all 7TM domain proteins.  

All GPCR structures have a conserved transmembrane core 
domain followed by helix 8 on the cytoplasmic side.  The root 
mean square deviation (RMSD) of the residues of the 7TM 
core structures between rhodopsin and other GPCRs whose 
structures have been solved are among 1.2 to 1.4 Å, indicating 
a close similarity and high level of conservation.  The most 
significant structural differences between rhodopsin and other 
GPCRs are in the ligand binding pocket and the lid covering 
the pocket, the EL2 loop region.  The EL2 of rhodopsin adopts 
a β-sheet fold, which tightly plugs into the entrance of the 
pocket, while the EL2 regions of other solved GPCR structures 
are loosely positioned above the ligand binding pocket and 
can be more easily opened for ligands to move in or out.  This 
is consistent with the observation that rhodopsin is activated 
by the photon-triggered isomerization of retinal in the ligand 
binding pocket, which requires the ligand not only being 
bound but also being tightly hold in the pocket, while most 
other GPCRs are activated by simply binding to the ligands.  
Although the mechanism of activation differs, rhodopsin and 
other solved GPCR structures share conserved core residues 
that define the conformation of the seven transmembrane 
domain and the molecular basis of the conformational change 
upon ligand activation, G protein interaction, and downstream 
signal transduction.  
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Class B G-protein-coupled receptors (GPCRs) are receptors for peptide hormones that include glucagon, parathyroid hormone, and 
calcitonin.  These receptors are involved in a wide spectrum of physiological activities, from metabolic regulation and stress control to 
development and maintenance of the skeletal system.  As such, they are important drug targets for the treatment of diabetes, osteo-
porosis, and stress related disorders.  Class B GPCRs are organized into two modular domains: an extracellular domain (ECD) and a 
helical bundle that contains seven transmembrane helices (TM domain).  The ECD is responsible for the high affinity and specificity 
of hormone binding, and the TM domain is required for receptor activation and signal coupling to downstream G-proteins.  Although 
the structure of the full-length receptor remains unknown, the ECD structures have been well characterized for a number of Class B 
GPCRs, revealing a common fold for ligand recognition.  This review summarizes the general structural principles that guide hormone 
binding by Class B ECDs and their implications in the design of peptide hormone analogs for therapeutic purposes.  

Keywords: G-protein-coupled receptor (GPCR); parathyroid hormone; glucagon; calcitonin; crystal structure
 
Acta Pharmacologica Sinica (2012) 33: 300–311; doi: 10.1038/aps.2011.170; published online 23 Jan 2012

Introduction
GPCRs are cell-surface receptors that share a common molecu-
lar architecture consisting of a seven transmembrane (7TM)/ 
heptahelical domain (HD) with an extracellular N-terminus 
and an intracellular C-terminus.  The seven transmembrane 
helices are interconnected by three extracellular and three 
intracellular loops (Figure 1A).  All GPCRs share a common 
signaling mechanism mediated by heterotrimeric G proteins 
that stimulate the synthesis of intracellular second messen-
gers, including cyclic AMP, inositol phosphate, and Ca2+ ions.  
GPCRs constitute a large family whose members are involved 
in numerous physiological functions and represent more than 
30% of all pharmaceutical drug targets.  Based on sequence 
homology of their transmembrane domains, G-protein cou-
pled receptors are further classified into five subfamilies[1].  
The Class A or rhodopsin family constitutes the largest group 
with more than 700 receptors and is characterized by high 
sequence identity.  The Class B or secretin receptor family is 
a small subgroup with only 15 peptide-binding receptors in 
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humans (Table 1) that are the focus of this review.  The other 
classes are the glutamate (Class C), adhesion (Class D), and 
frizzled/smoothened (Class E) receptor families[2, 3].  While all 
GPCRS share the same core structure to transduce exogenous 
signals across the membrane, they differ largely in their ligand 
recognition mechanism due to structural differences in their 
extracellular domains.  Class B GPCRs are characterized by the 
presence of large extracellular domains of 100 to 160 residues 
that are the main determinants for ligand binding specificity 
and play crucial roles in receptor activation[4].

Although full length GPCR structures have been solved 
only for Class A receptors, the structures of several Class 
B extracellular domains (ECDs), both in apo and hormone-
bound form, have been determined by X-ray crystallography 
and NMR[5–16].  These structures have provided substantial 
information about the conformation of Class B ECDs and the 
structural mechanisms of ligand binding and selectivity.  Table 
1 provides a list of the currently solved 16 ECD structures that 
collectively cover eight of the fifteen receptors.  

Class B GPCR ligands are related peptide hormones
In contrast to the wide variety of Class A GPCR ligands, all 
Class B ligands are peptide hormones that share significant 
degrees of homology with each other (Figure 1B).  All of them 
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have great potential as therapeutic targets for neuronal and 
endocrinal disorders. 

Secretin is the sole ligand of the secretin receptor.  It stimu-
lates secretion of acid-neutralizing fluids in pancreas and duo-

denum.  The expression of the secretin receptor in different 
parts of the CNS imply that secretin also plays important roles 
in the brain[17].

Growth hormone releasing hormone (GHRH) is the sole 

Figure 1.  (A) Cartoon presentation of the general architecture of class B GPCRs consisting of a N-terminal extracellular domain (ECD) and a C-terminal 
transmembrane domain (7TM).  The ECD forms a three layer α-β-β/α fold and the 7TM domain seven membrane-spanning helices connected by three 
extracellular loops (ECLs) and three intracellular loops (ICLs).  (B) Sequence alignment of Class B GPCR ligands with cartoon presentation of their N- 
and C-terminal domains on top.  Based on sequence similarity, ligands can be grouped into glucagon-like, CRF-like, and calcitonin-like subfamilies. 
Identical residues are shown as white letters on red background.  Partially conserved residues are shown as red letters.  The residue numbering on top 
corresponds to that of glucagon.  The lactam bridge in astressin is indicated by a black bracket, “f” in the astressin sequence indicates D-phenylalanine.  
(C) Two domain binding model for class B GPCRs.  (I) Peptide hormone and receptor are orientated for initial receptor ligand binding.  (II) The initial 
complex forms between the C-terminus of the peptide and the ECD of the receptor.  (III) This interaction facilitates the binding of the free N-terminus 
of the peptide to the juxtamembrane region of the 7TM domain of the receptor.  (IV) This binding induces a conformational change in the 7TM and 
cytoplasmic domain of the receptor, which mediates its interaction with a heterotrimeric G protein. 
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Table 1.  An overview of secretin receptor family members and their ligands, with structural details and therapeutic applications.  

  Secretin family	   Cognate ligands	      ECD-PDB	        Physiological relevance	                   Disorders	                       Therapeutic drugs 
  receptor
 
	 CRFR1	 CRF, Urocortin1	 3EHS, 3EHU[11], 	 Stress related pathway	 Depression/Anxiety	 Corticorelin/
			   2L27[13], 			   Acthrel (approved)
			 
	 CRFR2α	 CRF, Urocortin1, 	 1U34[5], 2JND[6],	 Stress related pathway, 	 Depression/Anxiety,
                                       Urocortin2,               3N96, 3N95,                   Cardiac contractility, 	 Heart failure, Cancer
		   Urocortin3	  3N93[14]	 Angiogenesis

	 PTH1R	 PTH, PTHrP	 3L2J [39], 3C4M[10], 	 Ca2+ homeostasis    	 Osteoporosis	 Forteo (approved) 
			   3H3G[12] 	 Hyperparathyroidism		  Preotact (approved 
						      in Europe)
	 PTH2R	 PTH, Tip39	 –	 Hypothalamic secretion,
		    		  Nociception

	 GHRH receptor	 GHRH	 –	 Growth hormone secretion	 Dwarfism	 Tesamorelin
						      (approved)

	 Glucagon receptor	 Glucagon	 –	 Glucose homeostasis	 Type 2 diabetes	

	 GLP1 receptor	 GLP-1, 	 3IOL[76], 3C59[9]	 Insulin secretion	 Type 2 diabetes	 Byetta/Exenatide,
		  Exendin4				    Liraglutide (both
						      approved)

	 GLP-2 receptor	 GLP-2		  Glucagon secretion, 	 Short bowel syndrome	 Teduglutide 
				    Gut mucosal growth		  (Phase III)
				  
	 GIP receptor	 GIP	 2QKH[7]	 Insulin secretion   	 Type 2 diabetes	 –			 
				    Lipid metabolism
		
	 PAC1R	 PACAP, VIP	 3N94[16], 2JOD[8] 	 Neurotransmitter, 	 Schizophrenia, 	 –
				    Neuromodulator, Neuroprotection	 Medulloblastoma
				  
	 VPAC1R	 VIP, PACAP	 –	 Vasodilation, Digestion, 	 Crohn’s disease, 	 –
				    Neuroprotection	 rheumatoid arthritis
	  	  
	 VPAC2R	  VIP, PACAP	 2X57	 Vasodilation, Digestion, 	 Schizophrenia	 –
				    Neuroprotection

	 Secretin receptor	 Secretin	 –	 Pancreatic secretin 		  –
				    H2O homeostasis

	 Calcitonin receptor	 Calcitonin	 -	 Ca2+ homeostasis	 Osteoporosis	 Miacalcin, Cibacalcin 
						      (approved)  

	 AMY receptor 	 Amylin		  Glucose homeostasis	 Diabetes	 Pramlintide/Smylin
	 (CTR /RAMP1,2,3)					     (approved)

	 CGRP receptor 	 CGRP	 3N7S[15]	 Vasodilation	 Migraine	 Telcagepant 
	 (CLR/RAMP1)					     (Phase III fail)
		
	 AM1 receptor 	 Andromedulin	 2XVT (RAMP2)	 Circulatory system, 	 Cardiovascular disease
	 (CLR/RAMP2)			   Vasodilation
					   
	 AM2 receptor 	 CGRP, 		  Vasodilation, Cellular 	 Cardiovascular diseases	 –
	 (CLR/RAMP3)	 Andromedulin		  tolerance for oxidative stress	  
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hormone of the GHRH receptor and stimulates growth hor-
mone secretion. 

Corticotrophin release factor (CRF) and urocortins are 
ligands for CRF receptors 1 and 2 (CRFRs) and function pre-
dominantly as mediators of stress responses[18].  Urocortin 2 
also has antiangiogenic activity important for tumor suppres-
sion function[19].  

Parathyroid hormone (PTH), parathyroid hormone related 
peptides (PTHrPs), and tuberoinfundibular peptide Tip39 are 
ligands for PTH receptors (PTH1R and PTH2R) that control 
calcium and phosphate homeostasis[20] and can function as 
neuromodulators[21].  

Glucagon, glucagon like peptides (GLPs), and glucose 
dependent insulinotropic polypeptide (GIP) are ligands for 
glucagon receptor (GLPRs and GIPR), respectively, and are 
important regulators of glucose homeostasis[22, 23].

Pituitary adenylate cyclase activating polypeptide (PACAP)
and vasoactive intestinal peptide (VIP) are shared ligands of 
three receptors, PAC1R, VPAC1R, and VPAC2R.  PAC1R is 
preferentially activated by PACAP, a neuroprotective modula-
tor and stimulator of nerve cell regeneration, while VPACR is 
efficiently activated by both the vasodilation-stimulating VIP 
and PACAP.  VIP also performs neuroprotective function with 
VPAC2R.  Both hormones also have neurotransmitter function 
and affect secretion or production of other hormones[24].  

Calcitonin (CT), calcitonin-gene-related peptide (CGRP), 
amylin (AMY), and andromedullin (AM) form a separate 
subclass of Class B hormones with roles in Ca2+- and glucose-
homeostasis as well as vasodilation.  Their receptors, cal-
citonin receptor (CTR) and calcitonin-like receptor (CLR), 
associate with three members of receptor activity-modifying 
proteins (RAMP1 to RAMP3) that modulate their hormone 
selectivity[25].

In addition, two non-human peptide ligands, Exendin-4 and 
Astressin, have pharmacological roles in treating type-2 dia-
betes and stress related disorders.  Exendin-4 is derived from 
the saliva of Gila monster.  As an analog of GLP-1, it activates 
GLP1R and stimulates glucose-dependent insulin secretion[26].  
Astressin is a synthetically designed high affinity antagonist 
for CRFR, in which D-Phe replaces L-Phe at the 12th position 
of CRF (12–41).  In addition, lactam cyclization between astres-
sin Glu30 and Lys33 stabilizes helix formation and strongly 
increases the affinity of the peptide.

Crystal structures of Class B GPCR ligands[7, 27] revealed 
single continuous amphipathic α-helices, while NMR solution 
structures[28, 29] indicated that the free peptide hormones are 
disordered or only partially α-helical, but adopt amphipathic 
α-helices upon receptor binding.  Binding studies employing 
truncated and chimeric peptide ligands demonstrated sepa-
rate contributions by the peptide N- and C-termini.  N ter-
minal truncations turn the peptide ligands into potent antag-
onists[24, 30], suggesting that the N-termini play critical roles in 
receptor activation, but are not essential for receptor binding.  
In contrast, C-terminally deleted peptides are still capable 
of receptor activation, but bind the receptors with markedly 
lower affinities[31].  Finally, peptides consisting of the C-termi-

nus of PTH and the N-terminus of calcitonin were unable to 
activate either PTHR or CTR, but efficiently activated a chime-
ric receptor consisting of the N-terminal ECD from PTH1R and 
the membrane embedded C-terminus from CTR[32].  Several 
other similar hybrid experiments with glucagon, GLP1R, calci-
tonin, VIP, and PACAP confirmed the distinct roles of the N- 
and C-termini of the peptide hormones in receptor interaction 
and activation[30, 31, 33–35].  These data provided the basis of the 
“two domain model”, which proposes that Class B hormone 
C-termini form initial complexes with their receptor ECDs, 
which in turn allows their N-termini to interact with the 7TM 
domains to activate the receptors (Figure 1C).  This model 
was further supported for CRF by NMR chemical shift per-
turbation data in combination with the charge distribution in 
CRF ECD and its antagonist astressin[5].  Finally, the first high 
resolution structure of the complex between a Class B GPCR 
ECD and its ligand, the crystal structure of the GIPR ECD–GIP 
(1–42) complex, directly illustrated that the C-terminus of the 
ligand formed the main ECD interaction while the N-terminus 
of the peptide remained free[7].  

The peptide hormone N- and C-termini expressed as sepa-
rate peptides are biologically inactive, implying that their link-
age is required for hormone activity[36].  The residues that con-
nect the termini appear to function as α-helical linkers, whose 
length and orientation, but not sequence, are required for full 
receptor activation[36].

The extracellular domains of Class B GPCRs share a 
common fold
While the 7TM domains of Class B GPCRs are highly homolo-
gous, their ECDs share exceptionally low levels of sequence 
identity (Figure 2B).  Therefore, structural studies of ECDs are 
crucial to understand ligand specificity and selectivity.  Table 1 
provides an overview of the 15 human Class B receptors and 
their ECD structures and functions. 

The basic fold of the extracellular domain is a three-layer α-β-β/α 
structure
The first structures of the extracellular domain of a class B 
GPCR were the NMR structures of the ECD of murine CRFR2β 
in apo form[5] and as complex with the synthetic antagonist 
astressin[6].  These structures revealed the core region of the 
ECD, which is comprised of two pairs of antiparallel β-sheets 
interconnected by hairpin loops.  This fold is stabilized by 
three interlayer disulfide bonds and by hydrophobic interac-
tions and resembles the short consensus repeat fold of comple-
ment control protein[37].  However, the N-terminus of the ECD 
was not resolved in these structures.  The ligand-bound ECD 
crystal structures of hGIPR–GIP (1–42) and hPTH1R–PTH 
(15–34) (Figure 2E&2C) demonstrated that the N-termini of 
their ECDs form long single α-helices that are connected by 
a disulfide bond with the first β strand and whose residues 
contribute to the ECD-ligand binding pocket[7, 10].  Overall, the 
ECDs share a three-layer α-β-β/α architecture, in which the 
N-terminal α-helix forms the first outer layer, the β1-β2 sheet 
and adjacent loops the middle layer, and the β3-β4 and the 
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Figure 2.  (A) A ribbon diagram of the basic architecture of the “secretin family recognition fold” of the extracellular domain of class B GPCRs.  The 
structure is mainly divided into three layers consisting of an N terminal α helix and two pairs of antiparallel β sheets.  The conserved disulfide bonds 
connecting the three layers are depicted as sticks.   (B) Sequence alignment of the extracellular domains of human Class B GPCRs with secondary 
structure elements for PTH1R indicated on top (PDB: 3C4M).  Invariant and conserved residues are highlighted.  The glycine residues specific for the 
CRFR subfamily are marked by a blue arrow. Invariant cysteine residues are indicated by a yellow box.  Identical residues are shown as white letters 
on red background.  Partially conserved residues are shown as red letters on white background.  The residue numbering on top corresponds to that of 
hPTH1R.  Cysteine pairs forming disulfide bonds are indicated by yellow outlines and by green numbers at the bottom.  TT=tight turns.   (C) Structure of 
the hPTH1R-PTH ECD complex with the ECD shown in light blue and PTH in green.  (D) Structure of the hCRFR1-CRF complex with the ECD shown in light 
blue and CRF in cyan.  (E) Structure of the hGIPR-GIP complex with the ECD in light blue and GIP in magenta.  (F) Structure of the hGLP1R-Glp1 complex 
with the ECD in light blue and Glp1 in yellow.  (G) Structure of the PAC1R-PACAP complex with the ECD in light blue and PACAP in orange.  (H) Structure 
of the CLR-Telcagepant (a small molecule drug for the treatment of migraine) with the CLR-ECD in light blue and RAMP1 in salmon.
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C-terminus, which for some ECDs includes a short (one-to-two 
turns) α-helix, the second outer layer (Figure 2A and 2C–2H).  
This organization, together with the principal hormone rec-
ognition mechanism, has also been found in the hGIPR–GIP, 
hPTH1R–PTH, hGLP1R–GLP1, and hCRFR1–CRF (Figure 
2C–2G).  This conserved α-β-β/α fold has also been named 
‘secretin family recognition fold’ that serves as the consensus 
mechanism of Class B GPCR ligand binding[16].

The sequence homology of the ECDs is very low and limited 
to the six disulfide-forming cysteines and only about a dozen 
other conserved residues (Figure 2B). Four of the residues 
are identical in all receptor ECDs and have been shown to 
play important roles in tertiary structure stabilization (D113, 
W118, P132, and W154 with respect to PTH1R in the align-
ment shown Figure 2B)[10].  The first disulfide bond links the N 
terminal helix to the middle layer β-sheet, the second one links 
the middle layer to the outer β-sheet, and the third one links 
the middle layer to the C-terminus of the ECD.  While the 
position of the disulfide bonds and secondary structure ele-
ments is highly conserved, the loops connecting the structure 
motifs vary considerably and therefore likely provide the basis 
for ligand binding specificities.  

Glucagon-like and CRF-like hormones adopt different positions 
in their ligand-binding pockets
The overall binding pattern of Class B GPCR peptide ligands 
to their cognate receptors shows a high level of similarity.  In 
all complex crystal structures, the peptide binds in amphip-
athic α-helical conformation to the same face of the ECD.  With 
the exception of the PAC1R-PACAP[8]  NMR structure, whose 

accuracy remains in doubt[16, 38], the C-terminus of the peptide 
forms hydrophobic and hydrogen bond interactions with the 
ligand binding pocket of the ECD while the N-terminus of the 
peptide remains free and shows a high level of flexibility.  The 
glucagon-like and the CRF-like subfamilies differ from each 
other both by their amino acid sequence signature (Figure 1B) 
and by their relative position in the ligand binding pocket.  As 
illustrated in Figure 3A, the position of the CRF C-terminal 
helix is translationally shifted by 5–8 Å relative to the location 
of PTH, GIP, and GLP.  These differences can be explained by 
two features.  First, the CRFR ECDs are characterized by one 
invariant glycine (Gly52 for CRFR1; blue arrow in Figure 2B) 
in the loop connecting β1 and β2 that is missing in peptide 
hormones of the glucagon-like subfamily and that causes a 
further extension of the loop.  Second, the CRFR N-terminal 
helices of the ECD are much shorter than those of PTHR, 
GIPR, and GLPR (Figures 2D–2F) and that can therefore not 
mediate ligand interactions[11].  It should be noted, that differ-
ences in ligand position could also be induced by experimental 
approaches.

Based upon the ligand-bound ECD structures, we illus-
trate possible models for the binding of these two hormone 
subclasses to a full length receptor (Figure 3B) to provide the 
relative dimensions of ligands and receptors and to illustrate 
the burial of the ligands.  In the GIP model, the N-terminus of 
the ligand forms a straight helical extension of the C-terminus 
to fit into the pocket formed between the 7TM helices.  The 
CRF model accounts for the L-shaped conformation with a 
bend after the 23rd residue seen in the recent NMR structure 
of hCRFR1-CRF (PDB: 2L27)[13].  Thus, ligands may adopt dif-

Figure 3.  (A) Structural alignment of ECD-bound Class B GPCR ligands.  The ligands form helical conformations with their C termini interacting with the 
ECD.  The N termini remain free and show a high level of flexibility.  The ligands shown are PTH(15–34) in green, GIP(1–42) in magenta, GLP1(7–37) 
in yellow, and CRF(22–41) in cyan.  (B) Models displaying possible hormone positions in the context of full length receptors.  Models of ECD-bound 
GIP(1–42) (magenta) [PDB: 2QKH] and a modified CRF (cyan) [PDB: 2L27] were superpositioned on a model of the transmembrane domain of turkey 
β1-adrenergic receptor [PDB: 2Y03].  The ECD was adjusted manually with distance constraints using COOT.  The different binding positions between 
CRF-like and glucagon-like subfamily peptides suggest that the ECDs may also adopt two different conformations in the context of full length receptors.  
Note that these models just illustrate relative dimensions of receptors and ligands as well as predictions of ligand binding sites.  Only structures of the 
complexes between full length receptors and their ligands can provide accurate position and conformation of receptor-bound ligands.
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ferent positions in spite of a common structural interaction 
mechanism.  The exact nature of complete ligand binding can 
only be determined by structural analyses of full length recep-
tors. 

Ligand-binding induces conformational changes in some ECDs
Most ECD structures have only been obtained in complex 
with ligand, indicating that ligand binding stabilizes these 
proteins and therefore favors crystallization of ECD-ligand 
complexes[14].  Hormone-induced conformational changes in 
the ECD have been clearly shown for CRFR1[11], where super-
position of apo (3EHS) and CRF-bound structures (3EHU) 
revealed a major rearrangement of the ECD secondary struc-
ture.  Ligand binding shifted the loop connecting the β3 and 
β4 strands by approximately 5–7 Å towards the peptide hor-
mone.  Phe72 in that loop shifted in the ligand bound structure 
by 7.2 Å and its side chain rotated towards the C terminus of 
the peptide to allow formation of a hydrophobic interaction.  
These changes illustrate the dynamic plasticity of the CRFR1 
ECD.  It will be interesting to see, if similar conformational 
rearrangements also occur in other ECDs of this class.  

In contrast to CRFR1, no major conformational change 
was detectable between the apo and PTH-bound structure of 
PTH1R, a representative of the glucagon-like subclass of hor-
mones[39].  Instead, the long second (C terminal) α-helix of the 
apo PTH1R ECD mimicked the structure of the peptide hor-
mone in the complex structure.  

Peptide ligands can modulate the monomer–dimer equilibrium 
of Class B GPCRs
Receptor oligomerization has been demonstrated for different 
classes of GPCRs[40].  In the case of Class C GPCRs, homo- or 
hetero-dimerization mediates receptor activation[41].  Dimeriza-
tion has also been demonstrated for Class A GPCRs[42, 43], 
including the real-time imaging of muscarinic acetylcholine 
receptor dimerization in live CHO-cells by total internal reflec-
tion fluorescence microscopy (TIRFM)[44].  Based upon several 
functional studies, Class B GPCRs can dimerize/oligomerize 
via their heptahelical domains.  In particular, the lipid-exposed 
hydrophobic surface of their TM4 helices appears to mediate 
receptor homo-dimerization[45, 46].  The functional significance 
of Class B GPCR oligomerization is poorly understood.  In 
the case of the secretin receptor, disruption of the interaction 
between tagged receptors in cells had no effect on ligand bind-
ing, but did reduce receptor signaling by an unknown mecha-
nism[45].  In addition to homo-oligomerization, hetero-oligomer 
formation has also been observed between VIP receptors 
VIP1R/VPAC2 and the secretin receptor[47] as well as for calci-
tonin receptor[48], CRFR[49], and PAC1R[50].

The ligand-bound structures of class B GPCR ECDs mostly 
presented monomeric conformations.  The exception is the 
PTH1 receptor, whose ECD adopted a dimeric conforma-
tion in the absence, but not the presence, of ligand.  This 
result is consistent with bioluminescence resonance energy 
transfer (BRET) analysis of full length PTH1R, which demon-
strated that addition of ligand leads to disruption of receptor 

dimers[39].  The dimeric arrangement of protomers in the apo 
ECD was mediated by the C-terminal α2 helix, which occu-
pied the peptide binding groove of the other monomer.  In 
the absence of ligand, the C-terminal helix thus structurally 
mimics the ligand which leads to the dimer formation.  Dimer 
formation was validated by BRET experiments with receptors 
in which the α2-helical region of the ECD was mutated.  While 
these experiments provided a structural basis for ECD-medi-
ated receptor dimerization for PTH1R, this feature may not be 
shared among other members of secretin family receptors.

Class B peptide ligands adopt α-helical conformations upon 
receptor binding
In complex with their receptor ECDs, peptide hormones are α- 
helical in both crystal and solution structures.  In most cases, 
the helices were amphipathic, especially at the C terminus, 
which is the main determinant for ECD binding.  In contrast, 
the free peptides appear to be unstructured in water and 
adopt their helical structure upon complex formation.  The 
thermodynamic and spectroscopic analysis of GIP peptide 
upon binding to GIPR revealed the burial of a solvent acces-
sible region and an increase in α helical structure, which con-
tributes to an increase in receptor affinity and the formation of 
a tight hormone-receptor complex[7].  Using NMR techniques, 
a transition from an unstructured to an α-helical conforma-
tion was also observed for the binding of CRF to its ECD in 
an analysis of the minimum peptide length requirement for 
ECD binding[51].  These results agree with a comparative NMR 
analysis of the conformational changes in PACAP (1–27) upon 
association with its full length receptor in micelles[52].  

The helix-capping residues at the N termini of Class B 
hormone ligands play a crucial role in initiating the transi-
tion to an α-helical conformation[53].  Functional studies using 
α-aminoisobutyrate analogs of PTH have also shown that 
the N terminal region forms a helical conformation when 
complexed with the extracellular loops and TM domains of 
PTH1R[54].

Many ECDs can interact with different ligands
Selectivity within the glucagon-like and CRF-like subfamilies is 
determined by non-conserved amino acids 
Most Class B GPCR can bind to more than one ligand.  For 
example, PAC1R has a very high affinity for PACAP [both 
PACAP(1–38) and (1–27)], but can also interact with VIP.  
Early demonstration of glucagon/GLP1 selectivity was 
achieved by the use of chimeric GLP1 and glucagon recep-
tors[30, 31].  

The family of CRF/Ucn peptides signals through two dif-
ferent receptors, CRFR1 and CRFR2.  Although these two 
receptors share 68% sequence identity, they differ markedly in 
ligand selectivity.  CRFR1 is selective for CRF and Ucn1 while 
CRFR2 binds all four ligands CRF, Ucn1, Ucn2, and Ucn3 with 
affinities that range from high to moderate.  Structural and 
biochemical analysis of the binding of the CRFR ECDs to the C 
termini of CRF, Ucn1, Ucn2, and Ucn3 identified the selectiv-
ity determinants that distinguish between the highly similar 
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peptide hormones.  The importance of these critical residues 
responsible for selectivity was confirmed by swapping experi-
ments.  Ucn1 and CRF contain an arginine at position 35 that is 
missing in Ucn2 and Ucn3 and that may determine selectivity 
to CRFR1 by binding to a CRFR1-specific negatively charged 
pocket consisting of Gln103 and Glu104[14].  Importantly, the 
affinity and selectivity patterns of the ECDs closely match 
those of the full length receptors[55].  Thermodynamic and CD 
analyses of CRF and urocortins may help to evaluate whether 
an inherent high helical propensity is responsible for the high 
affinity binding of Ucn1 (relative to CRF and Ucn2/3) to both 
CRFRs.  

The structural determinants of the selectivity of PTHRs are 
still unclear. The three ligands PTH, PTHrP, and TIP39 medi-
ate their biological functions through two receptors, PTH1R 
and PTH2R.  PTH can bind both receptors, while PTHrP is 
selective for PTH1R and TIP 39 is selective for PTH2R[56].  
Radioligand binding studies with wildtype and chimeric 
PTH2R/PTH1R receptors have pointed to the N terminal six 
residues of the ligand and to the extracellular loops of the TM 
domains as important selectivity determinants[57].  In addition, 
the presence of Trp23[58], a residue that is invariant in both 
PTH and TIP39, is probably responsible for selective binding 
of these two ligands to PTH2R.  

Importantly, binding of different ligands can induce highly 
distinct pharmacological receptor responses.  This was first 
shown for CRFR, where different physiological ligands and 
CRF receptor subtypes can differentially stimulate signaling 
pathways in human myometrial cells[59], effects that could only 
partially be confirmed in other cell types[60].  Many GPCRs can 
signals through β-arrestins in addition to the classical G pro-
tein pathways[61] and certain PTH analogs have been shown to 
function as “biased agonists” that preferentially signal either 
through G proteins or through β-arrestins[62, 63].  

Radioligand dissociation experiments with full length 
PTH1R and G proteins have shown that PTH (1-34) has a 
higher affinity than PTHrP (1–36) for PTH1R in its G protein-
uncoupled conformation (R0 state), while both peptides bind 
PTH1R with equal affinities in its G protein-coupled state (RG).  
Since the ECD adopts the same conformation when bound to 
either PTH or PTHrP, it is likely that this selectivity is due to 
ligand-selective rearrangements in the heptahelical domain of 
the receptor.  Therefore, full length structures of PTH1R with 
PTH and PTHrP will be required to provide a structural basis 
for the ligand selectivity of the R0 and RG states of the recep-
tor.  Analysis of differential ligand binding to different states 
of receptor may significantly contribute to the development 
of specific peptide analogs for therapeutic purposes[64] (see 
below). 

Selectivity of the calcitonin subfamily of receptors is modulated 
by RAMPs
At a different level of selectivity, the calcitonin receptor CTR 
and the calcitonin-like receptor CLR form heterodimeric com-
plexes with transmembrane protein partners called receptor 
activity modifying proteins (RAMPs).  The complex between 

CLR and RAMP1 is selectively bound and activated by the 
calcitonin gene-related peptide (CGRP), while CLR in com-
plex with RAMP2 and RAMP3 form adrenomedullin AM1 
and AM2 receptors, respectively.  In the absence of RAMPs, 
CTR is preferentially activated by calcitonin, whereas it func-
tions predominatly through  amylin (AMY) in combination 
with RAMP1, 2, and 3[65].  The functional association of several 
other Class B members with RAMPs has been reported pre-
viously, but the functional role of these complexes remains 
unknown[25]. 

The first crystal structure of RAMP1 (PDB: 2YX8) revealed 
a triangular arrangement of a three helix bundle that is sta-
bilized by three interconnecting disulfide bonds formed 
between six invariant cysteine residues (Figure 4A)[66].  The 
subsequent crystal structure of RAMP1 in complex with the 
extracellular domain of CLR (PDB: 3N7P, 3N7R, SN7S) identi-
fied both hydrophobic and electrostatic interactions between 
the R2 and R3 helices of RAMP1 and the N terminal helix of 
the CLR ECD[15].  The main RAMP residues that form hydro-
phobic interactions with CLR are the conserved Tyr66, Phe93, 
His97 and Phe101 (numbering refers to RAMP1, see alignment 
in Figure 4A).  Based upon the high sequence and structural 
conservation (root mean square deviation of 1.24 Å) between 
RAMP1 and RAMP2, similar interactions are predicted for the 
CLR-RAMP2 complex.  However, structural alignment of the 
CLR-RAMP1 complex (PDB: 3N7S) with apo RAMP2 (PDB: 
2XVT) reveals a sterical clash between the side chain of Arg97 
in the second helix of RAMP2 (RAMP1 has an alanine at the 
corresponding position) and the side chain of CLR Gln45 (Fig-
ure 4B), suggesting that RAMP2 may structurally rearrange 
when forming the ternary CLR-RAMP2-AM complex.  

Structure-based chemical modification of peptide ligands 
is important for therapeutic applications
The potential for therapeutic applications of class B GPCRs 
and their peptide binding partners is enormous.  However, 
direct application of these peptides as therapeutic drugs is 
hampered by their low efficacy due to poor bioavailability 
and rapid degradation.  Therefore, a substantial amount 
of research is dedicated to the design of stable, chemically 
modified analogs of these peptides[67].  Modifications used 
to increase peptide stability include (i) N-terminal fatty acid 
acylation (GLP1) or hexonylation (VIP), (ii) generation of 
chimeric hormones (Glp1/PACAP fusions), (iii) midchain 
modifications by mercaptopropionic acid derivatization of 
Cys14 in andromedulin and by replacing L-Phe12 in CRF with 
D-Phe, as well as (iv) alteration at the C-terminus by PEGyla-
tion (GIP)[68–72].  The resulting agonists and antagonists have 
increased metabolic stability, biological activity, and bioavail-
ability.  For example, the energy metabolism-regulating hor-
mone Glp1 is highly unstable with a bioavailability of only 1–2 
min due to its rapid enzymatic degradation by dipeptidyl pep-
tidase 4.  In contrast, the N-acylated Glp1 analog Liraglutide 
has a half life of 14 h, which makes it suitable for the treatment 
of type 2 diabetes[73].  Exenatide, an analog of the naturally 
occurring Glp1 agonist Exendin-4, in which the second alanine 
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is substituted by serine, improves both stability and activity[73].  
Exenatide increases insulin secretion in response to high blood 
sugar levels and suppresses the pancreatic release of gluca-
gon.  Similarly, a tetra-substituted analog of GHRH (1–29) 
circumvents proteolytic cleavage by associating with serum 
albumin[74].  Introduction of two proline residues at the very 
N-terminus of PTH (1–34) generated an analog that is resistant 
against degradation by dipeptidase and that is currently in use 
for the treatment of osteoporosis[75].  

Conclusions
The structures of the ECDs of Class B GPCRs in apo and hor-
mone-bound forms have identified the main determinants of 
receptor-peptide specificity and have established the unique 
fold of the extracellular receptor domains and the conserved 
conformation of their bound peptide ligands.  The structural 
data are consistent with various previous in vivo functional 
studies.  Therefore, in the absence of full length receptor struc-
tures, ECD-hormone complexes provide the best model for 
rational drug design and further studies.  There remains an 
ongoing need for structural interrogations of ligand-receptor 
specificities and selectivities for the design of more precise, 

specific, and stable peptides as therapeutic drugs to treat the 
many diseases impacted by class B hormones.  

Crystallization of full length Class B GPCRs may provide an 
even more formidable challenge than crystallization of Class A 
GPCRs due to the presence of the Class B-specific long flexible 
N terminal extracellular-domains.  The main bottleneck for 
crystallization of GPCRs has been their conformational flex-
ibility.  This bottleneck could be overcome for several Class 
A GPCRs by protein engineering approaches, including the 
introduction of stability-enhancing mutations, replacement of 
flexible surface loops with stable proteins like T4 lysozyme, 
and stabilization by complex formation with nanobodies.  In 
addition, improvements in the lipidic cubic phase method of 
membrane protein crystallization and in data collection using 
micro beam technology have further stretched the boundaries 
of membrane protein crystallization.  Given these technical 
advances, we look optimistically into the future of Class B 
GPCR crystallography.
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Figure 4.  (A) Sequence alignment of RAMP 1, 2, and 3.  The important non-conserved residue in the RAMP1-CLR interaction pocket has been 
highlighted by a blue arrow.  Invariant cysteine residues have been shown in yellow box.  Identical residues are shown as white letters on red 
background.  Partially conserved residues are shown as red letters.  The residue numbering on top corresponds to that of RAMP1.  (B) Structural 
representation of the CGRP receptor with the CLR-ECD in light blue and RAMP1 in salmon.  Structural alignment of the binding interface of the RAMP1-
CLR complex (salmon-lightblue; PDB: 3N7S) with apo RAMP2 (magenta; PDB: 2XVT).  The helices 2 and 3 of RAMP have been marked.  The side chains 
of RAMP2 R97 and CLR Q45CLR in the binding interface sterically clash.  
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The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtu-
ally every organ system.  One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular 
domain and constitutive dimerization.  The structure and activation mechanism of this family result in potentially unique ligand recogni-
tion sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds.  In the pres-
ent article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs.  
Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by 
which receptor function may be altered by different approaches.  Finally, we use four typical family members to illustrate orthosteric 
and allosteric sites with representative ligands and their corresponding therapeutic potential.
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Introduction
The G-protein-coupled receptors (GPCRs) form the largest 
class of cell surface receptors and play a major role in cellu-
lar perception of the environment[1].  GPCRs are sensitive to 
a diverse range of ligands that include light (photons), ions, 
amino acids and large proteins, and they represent an impor-
tant market for pharmaceutical companies.  Approximately 
50 GPCRs are estimated to be targeted by nearly half of the 
currently marketed drugs, and at least 300 GPCRs remain to 
be exploited[2].  Intense efforts have been devoted to screening 
new GPCR ligands that display high potential as drug leads.  
However, for many GPCRs, such efforts have failed to yield 
viable drug candidates.  Numerous issues prohibit traditional 
GPCR-targeted drug discovery.  For instance, ligands screened 
by traditional techniques usually act on GPCR orthosteric 
sites.  The conserved characteristics of the orthosteric sites 
make it difficult to achieve high selectivity for specific GPCR 
subtypes.  Furthermore, the persistent treatment regime of 
orthosteric ligands often leads to potent side effects and tol-
erance to the drugs.  In addition, for some GPCRs, such as 
peptide or protein receptors, it is inherently difficult to design 
synthetic orthosteric ligands.  Therefore, the pharmaceutical 
industry is searching for alternative approaches to identify 

new modulators of GPCRs.  The determination of GPCR struc-
tures, mechanisms and ways in which to modulate these prop-
erties are therefore of critical importance.  

The GPCRs can be classified into five families based on 
the sequence phylogeny of a conserved heptahelical trans-
membrane domain (7TM)[3].  Among these families, class C 
GPCRs are defined by two unique structural features: first, 
they possess a large extracellular domain that is distal to the 
7TM and contains the orthosteric sites; second, they form 
constitutive dimers with unique activation modes compared 
with other classes of GPCRs[4].  Class C GPCRs are com-
posed of metabotropic glutamate receptors (mGlu receptors), 
γ-aminobutyric acidB receptors (GABAB receptors), Ca2+-
sensing receptors (CaS receptors), sweet and amino acid taste 
receptors, pheromone receptors, odorant receptors in fish and 
several orphan receptors[3].  mGlu, GABAB, and CaS receptors 
represent an important new class of therapeutic targets that 
are integral to disorders that affect the central neural system 
(CNS) and calcium homeostasis[4, 5].  The taste receptors, on the 
other hand, attract significant attention from food companies 
because the taste additives that target these receptors repre-
sent a key feature of the large food industry market[5].  

The recently identified class C GPCRs have been targeted 
by only two therapeutic drugs currently on the market[6].  By 
contrast, in recent years there have been tremendous advances 
in the discovery of allosteric modulators of class C GPCRs, 
most likely as a result of the existence of multiple modula-
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tion sites for various ligands[7].  Cinacalcet, one of the first two 
allosteric modulators of GPCRs on the market, targets the CaS 
receptor[5].  This review focuses on the structural features that 
are involved in ligand recognition by class C GPCRs.  The pos-
sibilities of modulating receptor function through different 
types of ligands are then discussed.  Finally, representative 
ligands and the associated sites of four typical family members 
that contain therapeutic potential are reviewed in detail.  The 
ligands described in this review are small chemical molecules.  
Peptide ligands, such as antibodies, are not discussed.  

Representative family members
L-glutamate serves as the neurotransmitter at the major-
ity of excitatory synapses in the mammalian CNS.  As the 
metabotropic receptors for glutamate, mGlu receptors partici-
pate in the modulation of synaptic transmission and neuronal 
excitability throughout the CNS[8, 9].  The mGlu receptors are 
sub-classified into three groups based on sequence homology, 
G-protein coupling, and ligand selectivity[9].  Group I (mGlu1 
and 5) couple to Gq/G11 and activate phospholipase Cβ, 
resulting in the hydrolysis of phosphoinositides and the gen-
eration of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, 
whereas Group II (mGlu 2 and 3) and Group III (mGlu 4, 6, 7, 
and 8) couple predominantly to Gi/o, which inhibits adenylyl 
cyclase and directly regulates ion channels and other down-
stream signaling partners via the liberation of Gβγ subunits[10].  
The widespread expression of mGlu receptors makes these 
receptors particularly attractive drug targets, and recent stud-
ies continue to validate the therapeutic utility of mGlu recep-
tor ligands in neurological and psychiatric disorders, such as 
Parkinson’s disease[11], Fragile X syndrome[12], Alzheimer’s 
disease[13], anxiety, and schizophrenia[14].

GABA is a major inhibitory neurotransmitter in the mam-
malian CNS.  As the metabotropic receptor for GABA, GABAB 

receptor mediates slow and prolonged synaptic inhibition[15].  
The GABAB receptor functions as an obligate heterodimer of 
two subtypes, GABAB1 and GABAB2

[16, 17].  GABAB1 contains the 
GABA binding site[18], while GABAB2 is responsible for Gi/o 
protein activation[19].  In addition to a role in neuronal excit-
ability and plasticity, GABAB receptor may promote neuron 
survival under conditions of metabolic stress[20], ischemia[21], 
or apoptosis[22].  This receptor is a promising target for the 
treatment of many diseases, including spasticity, neuropathic 
pain[23], drug addiction, schizophrenia, anxiety, depression 
and epilepsy[24, 25].

The CaS receptor is a unique class C GPCR that can be acti-
vated by ions without the cooperation of other ligands[4].  This 
receptor is highly sensitive to a very slight change in extracel-
lular Ca2+ concentrations, which ensures its significant role 
in regulating calcium homeostasis[26].  The CaS receptor is 
involved in several disorders, including hyperparathyroidism, 
osteoporosis and different forms of hypocalcemia[26–28].  The 
clinical success of Cinacalcet indicates that more efforts should 
be devoted to the discovery of novel ligands that modulate 
CaS receptor activation.

The class C GPCRs contain three taste receptor subunits 

(T1R1, T1R2, and T1R3) that form two heterodimers, the 
sweet receptor (T1R2/T1R3) and the umami receptor (T1R1/
T1R3)[29, 30].  Only cis activation occurs within the sweet and 
umami taste receptors, which means T1R2 in the sweet 
receptor or T1R1 in the umami receptor are involved in both 
orthosteric ligand recognition and in G protein activation, 
whereas the common subunit T1R3 loses the correspond-
ing function[31].  In addition to natural sugars, the sweet taste 
receptor is also sensitive to artificial sweeteners, sweet pro-
teins and some D-amino acids.  In most mammals, the umami 
receptor can be activated by L-amino acids, whereas the 
human orthologue is only sensitive to monosodium glutamate 
and L-aspartate.  Flavor enhancers, such as purine nucleotides, 
have the ability to potentiate umami receptor function.  These 
artificial sweeteners and flavor enhancers represent a large 
food sector market[6].

Structural features of class C GPCRs
Class C GPCRs are composed of an exceptionally large extra-
cellular domain, a heptahelical transmembrane domain and 
an intracellular carboxyl-terminal (C-terminal) domain (Figure 
1A).  One distinct structural feature of class C GPCRs is the 
extracellular domain that contains a Venus flytrap (VFT) mod-
ule and a cysteine rich domain (CRD, except in the GABAB 
receptor).  The 7TM domain is conserved among all GPCRs 
with the exception that class C GPCR 7TMs contain only the 
allosteric sites.  The orthosteric sites are contained within the 
VFT.  The C-terminal tail of class C GPCRs is a highly vari-
able domain and plays a role in scaffolding and signaling 
protein coupling[3].  All the domains except for the intracel-
lular C-terminal domain provide plentiful ligand action sites.  
The other unique characteristic of class C GPCRs is their 
mandatory dimerization, either as homodimers (mGlu and 
CaS receptors) or heterodimers (GABAB receptor and T1Rs) 
(Figure 1B).  The allosteric interaction between different dimer 
domains results in a particularly complicated activation pro-
cess.  

Extracellular domain
Venus flytrap module 
The VFTs of class C GPCRs share sequence and structural sim-
ilarity with bacterial periplasmic binding proteins (PBPs)[31].  A 
generally accepted hypothesis is that the fusion of an ancestral 
rhodopsin-like receptor and a PBP formed the common ances-
tor of the class C GPCRs[3].  Additional detailed phylogenetic 
analysis of VFTs from four typical groups of class C GPCRs 
reveals that functional divergence involved positive selection 
and is partially responsible for the evolutionary patterns of the 
VFTs (Figure 2)[32].  The functionally divergent sites could rep-
resent potential drug targets that participate in ligand recogni-
tion.  

Among class C GPCRs, the VFT of the mGlu1 receptor is 
the first for which a crystal structure was solved, both in the 
absence and presence of its orthosteric ligands (Figure 1C)[33].  
The crystal structure of VFT revealed a bilobate domain with 
two lobes being separated by a cleft in which endogenous 
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ligands bind[33, 34].  The VFT oscillates between an open and 
closed conformation in the absence of bound ligand.  In the 
presence of ligand, glutamate interacts with lobe 1 in the open 
form of the VFT and then stabilizes a closed form through 
additional contacts with lobe 2.  Competitive antagonists 
inhibit receptor activation by preventing VFT closure[35], 
whereas locking the VFT in a closed conformation with an 
artificial disulfide bond results in a constitutively active recep-
tor[36].  

VFTs form constitutive dimers.  Based on the crystal struc-
ture and mutational analysis of mGlu1 VFTs, the hydrophobic 
interaction between lobe 1 of each monomer is the main driv-
ing force for VFT dimerization[37, 38].  Additionally, a disulfide 
bond linking the two VFTs was demonstrated to stabilize this 
dimer[37, 39, 40].  Similar to mGlu receptors, lobe 1 from each 
of the two hetero-subunits of the GABAB receptor, GABAB1 
and GABAB2, mediates subunit interaction[41, 42].  The lobe 1 

N-glycan, which is located at the interface of either GABAB1 or 
GABAB2, prevents receptor heterodimerization and cell surface 
trafficking[42].  

Cysteine rich domain (CRD) 
For most class C GPCRs (except for the GABAB receptor), 
the VFT and 7TM are connected by the CRD.  The CRD is a 
roughly 80 amino acid segment that contains nine completely 
conserved cysteines[3].  The crystal structure of the complete 
extracellular domain of the mGlu3 receptor was solved in 
2007 (Figure 1C)[43].  Based on this structure, the CRD forms an 
independent domain with a length of 40 Å, which physically 
separates the VFT and the 7TM.  The CRD plays an important 
role in receptor activation of the mGlu receptors, CaS receptors 
and sweet taste receptors with subunit T1R3[44, 45].  In mGlu-
like receptors, a conserved disulfide bridge between the VFT 
and the CRD is required for the allosteric interaction between 

Figure 1.  Schematic structure of class C GPCRs.  
(A) Structural organization of class C GPCRs.  Class 
C GPCRs have a common structure consisting of a 
VFT with two lobes (lobe 1 and lobe 2) separating 
by a cleft as orthosteric site, a 7TM and a CRD 
for all but GABAB receptor.  The crystal structure 
of mGlu3 receptor (PDB ID 2E4W) was used for 
the VFT and CRD.  The bovine rhodopsin crystal 
structure (PDB ID 1GZM) was used for the 7TM.  
(B) Schematic representation of two prototypical 
class C GPCRs as heterodimer (GABAB receptor), 
or homodimer (mGlu receptor).For GABAB receptor, 
the VFT is directly linked to the 7TM.  Two sub
units, GABAB1 and GABAB2, form an obligatory 
heterodimer.  GABAB1 is responsible for endogenous 
ligands binding, while GABAB2 is responsible for 
G protein activating.  For mGlu receptors, the VFT 
connects to the 7TM via CRD.  mGlu receptors form 
homodimers which could offer two orthosteric sites 
per dimer.  (C) The determined cystal structure 
for the VFT and CRD.  The first solved structure is 
the VFT of mGlu1 receptor (PDB ID 1EWK), which 
shows that the VFT oscillates between an open 
and a closed conformation.  The crystal structure 
of whole extracellular domain including the VFT 
and CRD (PDB ID 2E4W) has been solved firstly in 
mGlu3 receptor.  
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the VFT and the 7TM.  Mutation of this disulfide bond abol-
ished agonist-induced activation of the mGlu receptors[46].  
	
Heptahelical transmembrane domain (7TM) 
Similar to other GPCRs, class C GPCRs possess heptahelical 
transmembrane helices that are linked by three short intra- 
(iloops) and extracellular loops, which are always smaller than 
30 residues.  Despite the low primary sequence similarity, 
several similar 3D structural features of the 7TM exist between 
the class C GPCRs and the rhodopsin-like receptors, including 
the conserved disulfide bond that connects the top of TM3 and 
the second extracellular loop, the central position of TM3, the 
8th helix following the 7TM that is related to G-protein cou-
pling as well as several conserved residues[3].  

In contrast to rhodopsin-like GPCRs, the 7TM of class C 
GPCRs does not participate in ligand recognition or binding.  
However, this domain in class C GPCRs still contains a con-
served binding pocket that corresponds to the orthosteric sites 
of rhodopsin-like GPCRs[47].  This binding pocket represents 
a site where many synthetic molecules could potentially bind 
and modulate receptor activity. 

Activation mechanism and approaches for modulating 
activity 
Binding of competitive agonist to the VFT induces a series of 

conformational changes in all of the domains and activates 
the G-protein.  This activation mechanism is particularly 
complicated as a result of the constitutive dimerization of this 
family.  The dimeric receptor contains four or six independent 
domains in which allosteric interactions occur between each 
neighboring pair such that a conformational change in one 
domain will facilitate changes in others.  For a long time, how 
the different domains work together to activate the coupled 
effectors remained poorly understood.  The main hindrance in 
investigating this issue stems from difficulties in solving the 
receptor structure in the presence and absence of agonist.  In 
2000, the first crystal structures of the mGlu1 receptor broke 
this barrier.  These structures revealed the dynamics of the 
VFT and mechanism of modulation by glutamate.  A subse-
quent study in 2002 reported the structure of the mGlu1 recep-
tor in the presence of an antagonist (MCPG) or an allosteric 
modulator (Gd3+).  However, the structure of the 7TM domain 
remains unsolved, and details of the conformational change of 
the complete receptor in response to stimulation remain elu-
sive.  Our current knowledge regarding the activation process 
relies mainly on bioinformatic analyses, mutation constructs 
and advanced functional techniques.  In general, the activa-
tion progress of class C GPCRs includes the following three 
sequential events: 1) a competitive agonist binds to one VFT in 
the dimer and stabilizes the closed conformation; 2) the VFT in 

Figure 2.  The bootstrap tree of the prototypical 
members from human class C GPCRs.  The 
sequence of the VFT were aligned using the 
default parameters and the homologous 
bacterial PBPs were used as an outgroup to 
root the trees. Class C GPCRs form obligatory 
dimers.  Homodimers (mGluR and CaSR) 
linked by a disulfide bond between their VFTs, 
while heterodimers (GABABR and T1R) are not 
covalently linked.  
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the closed conformation transduces the activation signal to the 
7TM directly or via the CRD; 3) the rearranged 7TM activates 
the G protein.  

Ligand recognition by VFT 
Crystal structure analysis of the mGlu1 receptor revealed 
that agonist binding induces rearrangement of the dimeric 
VFTs[33, 34].  In the resting state (R), lobes 2 of each monomer 
are far away from one another and the dimeric VFTs are in an 
open conformation.  In the active state (A), lobe 2 from each 
monomer moves close enough to contact each other, while 
the dimeric VFTs are stabilized in a closed conformation in 
response to binding of a competitive agonist.  Consistent with 
the above model, N-glycan wedge scanning in the GABAB 
receptor revealed that the interaction and relative movement 
of lobe 2 from each monomer is important for agonist affinity 
and receptor activation[42].  

Constitutive dimerization ensures that each receptor dimer 
contains two orthosteric sites in most cases.  However, accord-
ing to mutational analysis in mGlu receptors, one ligand is 
sufficient to activate the receptor dimer[48].  That is, a ligand 
binding to one subunit leads to the closure of one VFT and 
Aco (Active/closed open) conformation is sufficient to stabi-
lize the active conformation of the receptor.  Although the Acc 
(Active/close close) conformation with two bound agonists 
has higher activation efficacy, a cation such as Gd3+ is needed 
to stabilize this conformation.  In the absence of a cation, elec-
trostatic repulsion between lobe 2 from each monomer would 
make this conformation drastically unstable[34].  

Activating signal transduction from the VFT to the 7TM 
Because the VFT and the 7TM of class C GPCRs are relatively 
independent domains, transduction of the activating signal 
from the VFT to the 7TM is a crucial step in receptor activa-
tion, despite the fact that many details remain to be defined.  
For mGlu-like receptors, the CRD plays a central role in 
transmitting the activating signal from the VFT to the 7TM.  
A conserved disulfide bond between the VFT and the CRD is 
indispensable for the allosteric interaction between the two 
domains[46].  Furthermore, a recent observation showed that 
ligand binding to the VFT triggers the relative movement of 
two CRDs during receptor activation.  The introduction of 
an inter-subunit disulfide bond between the two CRDs in the 
receptor dimer stabilized the active conformation[49].  For the 
GABAB receptor, which lacks the CRD, it is most likely that the 
VFT directly interacts with the 7TM, independent of the short 
linker between them[19].  

The model that one VFT is capable of activating one receptor 
dimer raises the question of whether the closed VFT domain 
activates the 7TM domain in the same subunit (cis-activation) 
or the closed VFT activates the 7TM of the other subunit 
(trans-activation).  Recently, it has been demonstrated that the 
7TM of the obligatory heterodimeric GABAB receptor can be 
directly trans-activated either by the GABAB1 VFT and 7TM 
or by the dimeric VFTs formed by GABAB1 and GABAB2

[50].  In 
contrast, only cis-activation occurs in the T1R receptor[31].  The 

activation mechanism of homodimeric receptors with two 
orthosteric sites is difficult to study.  The results for mGlu-like 
receptors showed that both cis- and trans-activation occur in 
the mGlu receptor activation mechanism[51].

G-protein activation by 7TM 
Due to the difficulties in transmembrane protein research, no 
crystal structures of the 7TM domain of any class C GPCR 
have been determined.  There is no direct data to indicate that 
a conformational change in the 7TM occurs during receptor 
activation.  Bioinformatic and mutational analyses suggest 
that the 7TM oscillates between various active and inactive 
conformations[46, 47].  FRET detection of the conformational 
change in the iloops of the mGlu1 receptor demonstrated that 
agonist binding induces iloop2 from each monomer in the 
dimeric 7TMs to move apart from each other, implying that 
the dimeric 7TMs rotate away from the interface during the 
activation process[52-54].

Chimeric constructs and mutational analyses indicate that 
the C-terminal end of the Gα subunit lies within a cavity 
formed by iloop 2 and 3 in class C GPCRs[55].  In addition, the 
8th helix also plays a role in G-protein coupling[55, 56].  Finally, 
it is important to mention that the highly conserved and un-
usually short iloop 3 of class C GPCRs plays an equivalent role 
to that of iloop 2 in rhodopsin-like receptors[57].

Ligand recognition sites
Class C GPCRs contain multiple ligand interaction sites as 
a result of their particularly complicated structure and acti-
vation mechanism.  These ligand binding sites are divided 
into two groups: orthosteric and allosteric binding sites.  The 
endogenous ligand binding sites, or orthosteric sites, reside in 
the VFT domain.  Both competitive agonists and antagonists 
interact with this site and induce significant conformational 
changes in the VFT: binding of a full agonist stabilizes a closed 
conformation[35], whereas binding of competitive antagonists 
stabilizes an open conformation[33, 34, 43].  Binding of partial 
agonists results in a partial or a complete, yet unstable, clo-
sure of the VFT domain[35, 58].  In contrast, the allosteric sites 
are topographically distinct from the orthosteric sites in any 
given receptor.  The binding of allosteric modulators changes 
the receptor conformation and, thereby, the affinities and/or 
efficacies of orthosteric ligands.  In general, the positive allos-
teric modulators (PAMs) facilitate the action of the orthosteric 
agonists, whereas the negative allosteric modulators (NAMs) 
block the activation of orthosteric agonists by stabilizing the 
7TM in an inactive conformation.  The large extracellular 
domain and constitutive dimerization of class C GPCRs 
provide more potential allosteric sites compared with other 
GPCRs.  To date, there are three groups of allosteric sites in 
class C GPCRs that have been reported (Figure 3).  

7TM allosteric sites 
Due to the existence of the large extracellular domain, the 
7TM of class C GPCRs lacks an orthosteric site, which instead 
is located within the VFT.  However, the binding pocket 
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is conserved and is formed by residues in TM3, 5, 6, and 
7, which correspond to orthosteric sites within the 7TM of 

rhodopsin-like receptors[3, 59].  Many allosteric modulators for 
class C GPCRs have been demonstrated to bind in this pocket.  
Homology modeling, docking analysis and mutagenesis stud-
ies have shown that nine conserved amino acid residues in 
the 7TM of T1R3 are involved in allosteric modulator bind-
ing.  The corresponding residues have also been found in the 
7TM of CaS[60-63] and mGlu receptors[64–66].  This implies that 
class C GPCRs share a common binding site for allosteric 
modulators.  Distinct from this common binding pocket, there 
are several other allosteric sites located in the 7TM of class C 
GPCRs.  Taken together, the main group of allosteric sites in 
class C GPCRs resides in the 7TM.  Most allosteric modulators 
that have been described for class C GPCRs interact with this 
domain.  

VFT allosteric sites adjacent to orthosteric sites 
Recently, the VFT binding pocket was shown to be large 
enough to accommodate both orthosteric and allosteric sites, 
which are adjacent to each other but do not overlap.  Small 
molecules binding to this allosteric site could cooperate with 
endogenous ligand to stabilize the closed conformation of 
the VFT.  These small molecules are new allosteric modula-
tors and are called extracellular domain allosteric modulators 
(EDAM).  To date, there are three groups of EDAMs and their 
corresponding sites have been identified: IMP to the T1R1 VFT 
of the umami taste receptor[31], SE-2/SE-3 to the T1R2 VFT of 
the sweet taste receptor[67] and the (R)-PCEP derivatives with 
long alkyl chains to the VFT of the mGlu4 receptor[68, 69].

Allosteric sites located at the interfaces between the VFT, CRD 
and 7TM 
Constitutive dimerization plays a crucial role in the activation 
of class C GPCRs so the sites involved in dimerization repre-
sent another group of allosteric sites.  In the Acc conformation 
of the mGlu1 receptor, electrostatic repulsion from the four 
adjacent negatively charged residues Glu233 and Glu238 (and 
the analogous residues in the dimeric VFTs) makes the active 
conformation unstable.  The introduction of a cation, such as 
Gd3+ or Ca2+, can neutralize this electrostatic repulsion and sta-
bilize the active conformation.  It was shown that the Gd3+ ion 
binds at the interface between lobe 2 of the VFTs[34].  Therefore, 
the interface of the dimeric VFT constitutes a group of allos-
teric sites.

Recent data show that the relative movement of dimeric 
CRDs is potentially involved in the mGlu receptor activation 
process[49], so this region could represent another allosteric 
site.  In support of this hypothesis, Jiang et al identified 10 resi-
dues in the CRD of human T1R3 and the hinge region of T1R2 
that play an important role in the effect of sweet proteins, such 
as brazzein[45].

Ligand binding sites of four typical class C GPCR family 
members 
So far, there are only two therapeutic drugs that target class 
C GPCRs on the market: Baclofen, an agonist targeting the 
GABAB receptor, and Cinacalcet, an allosteric modulator tar-

Figure 3.  Great variety of ligands to modulate class C GPCRs function.  
(A) Schematic model of orthosteric sites and allosteric sites in mGlu-like 
receptor.  There are four groups of allosteric sites in class C GPCR: sites 
in the 7TM, which have been studied extensively; sites in the extracellular 
domain including VFT and CRD and sites in the interface between VFT, 
CRD and 7TM, the latter two open the new possibilities to modulate 
activity of mGlu receptors.  The structure model was built according to 
the crystal structure of mGlu3 VFT and CRD (PDB ID 2E4W) and the 
crystal structure of bovine rhodopsin 7TM (PDB ID 1GZM).  (B) Modulation 
mechanism of various ligands on the function of homodimeric class 
C GPCRs.  The orthosteric agonists promote the VFT closure while the 
antagonists prevent it.  The extracellular domain allosteric modulators 
(EDAM) bind to a site adjacent to the orthosteric site and increase the 
agonist effect.  The Gd3+ ion binds to the interface of the lobe 2 of the 
VFTs and stabilizes the full active conformation when both VFTs are 
closed.  The sweet proteins brazzein or monellin interact on the CRD of 
human T1R3 and increase the agonist effect.  The typical PAMs or NAMs 
bind to the 7TM and stabilize the active or inactive conformation of 7TM, 
respectively.
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geting the CaS receptor.  The former represents a conventional 
orthosteric drug, while the latter represents a novel allosteric 
modulator.  Allosteric modulators currently attract signifi-
cant attention because they offer important advantages over 
orthosteric drugs.  First, they often have no effect on their 
own and act in concert with physiological receptor activation, 
which results in fewer side effects and a decreased propensity 
for desensitization; second, their binding sites do not undergo 
selective pressure so they display a higher subtype selectivity; 
third, multiple allosteric sites make it easy to synthesize novel 
molecules that exhibit increased bioavailability and desirable 
pharmacokinetic properties.  Diverse allosteric modulators 
have been identified for class C GPCRs as a result of their 
plentiful allosteric sites and the numerous possibilities to 
modulate their function by acting on multiple steps during the 
activation process (Table 1).

Taste receptors — multiplicity of various ligand-binding sites
A unique characteristic of taste receptors is their diversity of 
ligand-binding sites.  Aside from the orthosteric sites, there are 
at least eight allosteric sites that have been identified in taste 
receptors: the EDAM sites for IMP in T1R1-VFT[31] and for 
SE-2/SE-3 in T1R2-VFT[67]; the allosteric agonist sites for sweet 
proteins in T1R3-CRD[45], cyclamate in sweet receptor T1R3 
7TM[70], S807 in T1R1 7TM[31] and S819 in T1R2-7TM[31]; the 
PAM site for cyclamate in the umami receptor T1R3-7TM[70]; 
and the NAM site for lactisole in both the sweet and umami 
receptor T1R3-7TM[71].  These sites might represent potential 
targets for health-related products or drugs to treat diseases, 
such as hypertension or diabetes.

mGlu receptors — the most promising candidates for clinical 
applications 
The orthosteric sites of mGlu receptor subtypes are the most 
highly conserved throughout evolution, such that there are 
almost no orthosteric ligands that display higher selectivity 
for a given subtype.  Moreover, the glutamate-binding pocket 
strictly selects for agonists with amino acid-like structures, 
which are notoriously difficult to synthesize and display 
undesirable pharmacokinetics.  By contrast, most of the allos-
teric modulators for mGlu receptors possess better subtype 
selectivity as a result of less conserved allosteric sites and bet-
ter pharmacological properties due to their structural diversity 
and more extensive lipophilic nature[72].  

The first allosteric modulator that was discovered for class 
C GPCRs is CPCCOEt, which functions as a NAM for the 
mGlu1 receptor.  Numerous allosteric modulators of group I 
mGlu receptors have since been identified.  It has been pro-
posed that the movement of Trp798 in TM6 of mGlu1 (Trp784 
at the homologous position in mGlu5) is essential for receptor 
activation[66].  The PAMs stabilize the active conformation of 
this group by facilitating the movement of a conserved Trp 
in TM6, whereas the NAMs prevent the relative movement 
between TM6 and TM3[66].  For the mGlu5 receptor, most 
PAMs and NAMs share an overlapping binding pocket that is 
composed of TM3, 5, 6, and 7[73], except for a small number of 

distinct sites[74].  For the mGlu1 receptor, however, the PAMs 
and NAMs bind to distinct sites in the 7TM[64, 65, 75–77], except 
for a shared site that consists of Val757 in TM3[65, 77].  Removed 
from the conserved binding pocket, there is a distinct allos-
teric site located in TM1.  An unique PAM for both the mGlu1 
and mGlu5 receptors, CPPHA, was shown to bind to this site.  
Phe585 in TM1 of mGlu5 (Phe599 at the corresponding posi-
tion in mGlu1) is essential for the recognition of CPPHA[74].  

The allosteric modulators of the mGlu5 receptor are leading 
with regard to the development of pharmaceuticals that target 
class C GPCRs.  Convincing preclinical data have shown a 
significant effect of several PAMs in schizophrenia[14].  Fur-
thermore, positive clinical results have also been obtained for 
NAMs in L-DOPA-induced tardive dyskinesia in Parkinson’s 
disease[11].  

Most allosteric modulators for group II mGlu receptors are 
PAMs.  These modulators provide greater subtype selectiv-
ity compared with the agonists, especially in the case of the 
mGlu2 receptor.  Ser688 and/or Gly689 in TM4 and Asn735 
in TM5 have been shown to be involved in PAM binding to 
the mGlu2 receptor[78].  The competitive agonists for group II 
mGlu receptors display potent activity against anxiety[79] dis-
orders and schizophrenia[80] in clinical trials; however, they are 
unable to discriminate between the group II subtypes.  PAMs 
with selectivity for the mGlu2 receptor have displayed similar 
effects as agonists in an animal model[81], which suggests that 
there is a high possibility for success in clinical trials.

Compared with the modulators that have been described for 
group I and II mGlu receptors, notably fewer allosteric modu-
lators have been identified that target group III mGlu recep-
tors.  It also important to note that some allosteric modulators 
that target group I mGlu receptors have the opposite effect on 
group III mGlu receptors.  Recently, the mGlu4 receptor has 
been the focus of significant attention because the correspond-
ing PAMs that target this receptor represent promising novel 
drugs with which to treat Parkinson’s disease[11].

GABAB receptors — the unique PAM CGP7930 
Currently there is only one drug on the market, baclofen, that 
functions as a competitive agonist towards the GABAB recep-
tor.  Clinical applications over the course of several decades 
have shown that baclofen is an undesirable antispastic agent 
due to its potent side effects, unfavorable pharmacokinetic 
properties and a tendency for patients to develop tolerance to 
the drug.  The newly described allosteric modulators provide 
opportunities to develop new therapeutic agents for several 
GABAB receptor related disorders.

CGP7930 is a typical PAM that was the first to be identi-
fied that targets the GABAB receptor[82].  This PAM can both 
enhance the potency and the maximal response that is induced 
by GABA[82].  Radioligand binding experiments suggest that 
CGP7930 not only promotes agonist affinity to the orthosteric 
sites but also strengthens the interaction between the GABAB 
receptor and the preferred Gαo

[83].  A growing body of evi-
dence has shown that CGP7930 interacts with the GABAB2 
7TM[82].  According to a recently proposed model in which 
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agonist binding induces the widening of the cleft between 
the two 7TMs without changing the helical configuration of 
each subunit, it is possible that CGP7930 binds at the interface 
to enhance the separation of the two 7TMs[84].  Interestingly, 
CGP7930 has been found to function as an independent par-
tial agonist in cAMP assays[85].  We reported for the first time 
that CGP7930 itself could induce ERK1/2 phosphorylation 
in cultured cerebellar granule neurons (CGNs)[86].  Further-
more, we found that CGP7930 alone could protect CGNs from 
apoptosis via transactivation of the insulin-like growth factor 
1 (IGF-1) receptor[22].  There is no obvious difference between 
CGP7930 and GABA or baclofen to explain the function 
described above[22].  So far, CGP7930 is a unique PAM in that 
it is the only such modulator that has been reported to exert 
an independent physiological effect.  In addition to CGP7930, 
a number of PAMs that target the GABAB receptor have been 
reported, such as GS39783[87].  Several allosteric agonists have 
also been synthesized, including rac-BHFF and its analogs[88].  
However, no NAMs that target the GABAB receptor have been 
described.  

It has been reported recently that several amino acids[89, 90] 
and Ca2+ [91, 92] can modulate GABAB receptor function via a 
conserved pocket that is located near the orthosteric sites, 
which is reminiscent of the modulation that has been observed 
for mGlu-like receptors.  Unfortunately, animal models sug-
gest that the existing allosteric modulators for the GABAB 
receptor are not suitable for clinical use due to their low 
potency and unfavorable pharmacokinetic properties[5].  
Therefore, it is necessary to identify new allosteric sites on the 
GABAB receptor that may lead to the discovery of new types 
of therapeutic ligands.

CaS receptors — first clinical success 
To date, four groups of ligands have been identified for the 
CaS receptor: the endogenous cations[93], the L-amino acids 
(such as L-phenylalanine and L-tryptophan[94]), the calcimimet-
ics and the calcilytics[95].  Except for the cations, the latter three 
groups are all allosteric modulators.  Both the orthosteric site 
for Ca2+ and the allosteric site for L-amino acids reside in the 
VFT.  The amino acid sites are adjacent to the orthosteric site, 
which corresponds to the amino acid binding pocket in the 
mGlu or GABAB receptors[96].  The calcimimetic and calcilytic 
sites are located in the 7TM.  Structurally similar calcimimet-
ics and calcilytics share a common allosteric binding pocket, 
whereas structurally distinct calcilytics recognize distinct 
sites[97].  

Among these ligands, the orthosteric agonists are inorganic 
ions, so it is difficult to mimic them with synthetic molecules.  
The L-amino acid type modulators are also not suitable for 
therapeutic development due to their poor bioavailability and 
blood-brain barrier permeability.  The calcimimetics and the 
calcilytics, however, have successfully circumvented these 
problems.  The calcimimetic drug Cinacalcet has already been 
approved to treat hyperparathyroidism clinically; meanwhile, 
several calcilytics have shown potent effects in animal models 

of osteoporosis[27] and hypocalcemia[26].  Although one calci-
lytic drug, ronacaleret, did not display positive effects in a 
phase II clinical trial[98], a second generation of calcilytics with 
optimized characteristics is awaiting clinical validation.

Conclusion
Class C GPCRs distinguish themselves from other GPCRs 
by two distinct structural features: first, they possess an 
unusually large extracellular domain that is responsible for 
orthosteric ligand recognition, while the 7TM (which normally 
contains the orthosteric ligand-binding site) has gained many 
allosteric sites; second, the functional class C GPCR molecules 
are obligatory dimers, so the interface between the VFT, CRD, 
and 7TM constitutes another important allosteric site.  Fur-
thermore, it was recently demonstrated that the VFT is large 
enough to accommodate allosteric modulatory sites adjacent 
to the orthosteric sites.  The unique structure and complicated 
activation mechanism of class C GPCRs makes it possible to 
modulate their function by many new approaches.  In recent 
years, allosteric modulation has become the most attractive 
approach because of the decreased side effects and develop-
ment of patient tolerance, improved subtype selectivity and 
increased chemical accessibility.  The development of allosteric 
modulators for class C GPCRs has progressed fast.  Among 
them, Cinacalcet was the first clinical success.  Following Cina-
calcet, group I and II mGlu receptor modulators are expected 
to enter the market in the near future as the next generation of 
drugs that target class C GPCRs.  By contrast, allosteric drugs 
that modulate the group III mGlu and GABAB receptors might 
represent a drug generation for the more distant future.  To 
promote the application of allosteric modulation therapeutics 
that target class C GPCRs, future efforts should focus on inves-
tigating the precise structural dynamics and allosteric modula-
tion mechanisms.  Determination of the receptor structures is 
a direct way to address such issues.  Traditional mutational 
analysis and chimeric constructs are also powerful tools that 
report on related information in the absence of a crystal struc-
ture for a particular receptor.  Advanced functional assays, 
such as BRET (bioluminescence resonance energy transfer) 
or FRET (fluorescence resonance energy transfer), are widely 
used to reveal conformational changes and dimer or oligomer 
formation.  Additionally, computational approaches, such as 
ligand- or structure-based homology modeling and docking, 
are gaining importance as valuable complements to experi-
mental structure-function studies.  These techniques, in combi-
nation with modern drug screening assays, make it possible to 
identify molecules targeting class C GPCRs through sites and 
mechanisms other then traditional orthosteric small molecules.
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Ice breaking in GPCR structural biology
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G-protein-coupled receptors (GPCRs) are one of the most challenging targets in structural biology.  To successfully solve a 
high-resolution GPCR structure, several experimental obstacles must be overcome, including expression, extraction, purification, and 
crystallization.  As a result, there are only a handful of unique structures reported from this protein superfamily, which consists of over 
800 members.  In the past few years, however, there has been an increase in the amount of solved GPCR structures, and a few high-
impact structures have been determined: the peptide receptor CXCR4, the agonist bound receptors, and the GPCR-G protein complex.  
The dramatic progress in GPCR structural studies is not due to the development of any single technique, but a combination of new 
techniques, new tools and new concepts.  Here, we summarize the progress made for GPCR expression, purification, and crystalliza-
tion, and we highlight the technical advances that will facilitate the future determination of GPCR structures.
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Introduction
Membrane proteins comprise approximately 30% of organ-
ism proteomes; however, they comprise only 1.1% of the 
total protein data bank (PDB) entries (862 coordinate files in 
a total of 75 694 depositions).  Among which, the GPCRs are 
greatly under-represented in the PDB when compared to the 
other general protein families.  These receptors are involved 
in every physiological activity, including sight, taste, and hor-
mone regulation, etc.  They function as signal transmitters that 
can sense a huge variety of signals and amplify them inside 
the cells, leading to different cell responses, and are involved 
in almost all human diseases.  Among the approximately 
400 non-olfactory receptors, 50–60 receptors are the targets 
of approximately 40% of the drugs on the market, while the 
other 350 are yet to be explored.  As the largest protein family 
of drug targets in the human body, there are only 45 deposited 
structure files representing 7 unique receptors[1–7].  Moreover, 
this set is somewhat redundant, as the β1 and β2 adrenergic 
receptors are closely related.  Given that over 800 receptors are 
found in the human genome and that a large variety of ligands 
specifically bind to this protein family, the mechanisms of 
ligand recognition and signal transduction are largely unchar-
acterized.

To successfully solve a GPCR structure, one needs to over-

come multiple bottlenecks, including expression, extraction, 
and the formation of crystal contacts.  In addition to these 
general difficulties that have been long known in crystalliz-
ing membrane proteins, the flexibility of the receptor poses a 
major obstacle[8, 9].  It has been observed repeatedly for multi-
ple receptors that the transmembrane helix bundle rearranges 
during activation.  The distances between the helices differ 
by up to 10–14 Å during this process[10–12].  It has also been 
reported that between the active and inactive states, these 
receptors have multiple intermediate states that are induced 
by different types of ligands, and each state might correlate 
to its own structural features.  Because GPCRs are so flexible, 
they are generally in a mixture of different conformations, and 
the field tends to use a concept of “energy landscape” instead 
of “conformation” to describe the dynamics of GPCRs[13].  
It is not uncommon to observe that exchanging the ligand 
or mutating one amino acid of the GPCR can dramatically 
reduce the diffraction resolution or even abolish crystalliza-
tion altogether.  This is probably one of the key reasons why 
it took researchers an additional 15 years after the first high-
resolution membrane protein structure was reported in 1985[1] 
to obtain the first GPCR structure.  Despite the current low 
success rates for achieving high-resolution structures, years 
of technology developments and studies of this protein fam-
ily have shed light on this challenging project.  Recent break-
throughs include the structures of novel GPCRs[7], discovery of 
new activity states of GPCRs[10, 14–16] and a structure of GPCR in 
complex with other proteins[11].  This review will focus on new 
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clues and the latest progress on the structure determination of 
GPCRs.

The experimental procedure for obtaining a membrane pro-
tein crystal structure typically involves three steps: the protein 
has to be functionally expressed, purified in detergent micelles 
and crystallized.  We will summarize the recent technological 
developments accordingly.

Protein expression
With few exceptions, GPCRs are often found in very small 
amounts in native tissue, which makes it nearly impossible to 
purify the amounts of material necessary for crystallographic 
studies from natural sources.  It is therefore necessary to 
set up a robust recombinant expression system.  To achieve 
high yields of recombinant GPCR proteins, gaining a better 
understanding of the host organisms is an emerging strategy 
compared to standard techniques such as the screening of pro-
moters, development of fusion adducts, and adjusting the cul-
ture process parameters.  Conventionally, there are 4 types of 
expression host systems used in protein X-ray structural stud-
ies: E coli, yeast, insect cells and mammalian cells, and each 
system has its own limitations that restrict its use in GPCR 
overexpression studies.

Mammalian cells and insect cells 
Among the four systems, the mammalian cell expression 
system is the closest to the natural environment of GPCRs, 
and thus serves as an expression host for many GPCRs.  The 
yield of some receptors in this system is as high as 10 mg/L 
of media[17]; however, most of the receptors are designed for 
functional studies so far, and only a few of those were applied 
to overexpression.  High cost, difficulty in scaling up and long 
experimental cycles are barriers that limit the use of mamma-
lian cell expression systems.  

On the contrary, insect cells,  which shares similar 
disadvantages as mammalian systems, are a more success-
ful host.  Six out of seven unique receptors were expressed in 
either sf9 cells or high5 cells[18].  After careful optimization, 
the baculovirus expression system often has increased protein 
yields over that of mammalian cells such as HEK cells[19].  

Yeast 
Yeast is an attractive expression system because it can be 
engineered as a microorganism while possessing eukaryotic 
machinery[20].  Yeast has a short generation time (approxi-
mately 2 h), requires relatively simple media and is easy 
to work with.  Years of characterization have also pro-
vided numerous plasmids and experience in scale-up fer-
mentation.  As a eukaryotic expression system, yeast can 
post-translationally modify the receptor; therefore, it was one 
of the earliest expression systems used for GPCR.  However, 
the yeast system has its own drawbacks.  The composition/
quantity of N-glycans and the membrane composition of yeast 
are different from those of mammalian systems.  This may 
cause problems when a correct modification or lipid environ-
ment is necessary for the functional expression of some recep-

tors, such as rhodopsin or opioid receptors[21, 22].  In addition, 
yeast cells are surrounded by a cell wall that is notoriously 
hard to handle when trying to extract membrane and intracel-
lular proteins.  

Initial attempts were made in yeast systems, such as S cer-
evisiae, S pombe and P pichia, to express the β2 adrenergic recep-
tor, the M1 muscarinic receptor and the opioid receptors[23–25].  
Multiple factors including supplementation of a ligand, his-
tidine and DMSO were evaluated and optimized[26, 27], and 
quite a few receptors were reported with expression levels of 
>1 mg/L of media[28, 29], which is sufficient for structural stud-
ies.  Recently, Iwata’s group solved the crystal structure of 
the human Histamine H1 receptor, which was expressed in 
P pichia[7].  To avoid the complication of saccharide modifica-
tion in the yeast system, the N-terminal portion comprising 
19 amino acids which includes two glycosylation sites (Asn5 
and Asn18) were truncated.  The receptor sequence was also 
optimized according to the codon usage for P pichia to achieve 
a higher expression level[30].  The structure had very high 
similarity to the structure of β2 adrenergic receptor and the D3 
dopamine receptor, which were obtained using higher eukary-
otic expression systems[7].  These results indicate that yeast has 
the ability to correctly fold mammalian GPCRs and has the 
potential for applications in protein crystallographic research.  

Despite this tremendous success, we do not completely 
understand this expression system yet.  Research from dif-
ferent groups raises our concern about the homogeneity of 
yeast-expressed material[8, 31–33].  Their results indicate that 
the expressed product is a mixture of functional and non-
functional receptors, because during optimization the expres-
sion of the functional GPCR will dramatically increase but the 
overall expression level is somewhat constant.  In addition, 
the expression of GPCRs is case-sensitive.  Although multiple 
receptors showed a relatively high expression of 1–10 mg/L 
of culture, the ratio of functional expression is extremely low.  
O’MALLEY et al investigated 12 GPCRs expressed in S cerevi-
siae, and only the A2A adenosine receptor retained its ligand 
binding activity.  Other receptors, despite being processed 
and expressed in the same conditions, failed to localize in the 
plasma membrane and had no detectable ligand binding[31].  
A more detailed study using N-terminal sequencing and 
N-glycosylation detection demonstrated that most of these 
nonfunctional receptors were not properly processed.  In addi-
tion to S cerevisiae, P pichia had similar problems in processing 
signal sequences[34], indicating that there are still some fun-
damental differences within the higher eukaryotic systems.  
Currently, little is known regarding the factors that govern the 
folding and cellular trafficking of heterologously expressed 
GPCRs in yeast, and more efforts are needed in the future to 
make this system more robust and desirable.

E coli 
Although it is known that eukaryotic membrane proteins, 
especially GPCRs, are impossible to express efficiently in 
prokaryotic systems, the low-cost and easy-to-handle nature 
of E coli encouraged the exploration of this system for the 
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expression of GPCRs.  Initially, researchers managed to make 
some progress by successfully obtaining GPCRs such as the 
β2 adrenergic receptor and the 5-hydroxtryptamine receptor 
(5HT1α) with functional ligand-binding activity[35].  The key 
was to use a maltose-binding protein (MBP) as an N-terminal 
fusion tag, which helped the receptor to be expressed and 
folded in the periplasm.  Grisshammer et al also found that 
addition of thioredoxin A to the C-terminus of GPCR further 
increased their stability and yield[36].  

However, even if all of the expression parameters are opti-
mized, the GPCRs expressed in E coli may not be sufficient for 
direct use in crystallographic studies yet.  To date, most crys-
tallization studies are focused on indirect uses, such as expres-
sion or stability screening, to facilitate higher throughput in a 
short period of time.  The best example of this was provided 
by the Tate group in solving the crystal structures of the β1 
adrenergic receptor and the A2A adenosine receptor in the 
active state[16, 37].  All of the mutants were expressed in E coli 
using a procedure that is similar to Grisshammer’s, and the 
construct optimization was performed accordingly, before the 
final transfer to insect cells for large-scale preparations.  The 
work of PLÜCKTHUN et al pushes these approaches to a new 
level.  They developed a fluorescence-activated cell sorting 
(FACS) method that could enhance both the expression level 
and stability of GPCRs while retaining function and tailoring 
ligand selectivity[38].  Using this approach, the expression levels 
of multiple GPCRs were increased several folds, and a recep-
tor analog that more prone to bind agonists vs antagonists was 
obtained, similar to results from the Tate group when they 
solved the active state A2A adenosine receptor structure[39].  
Moreover, data from both the Tate and Plückthun groups indi-
cate that all the results from prokaryotic systems can be suc-
cessfully transferred to eukaryotic expression systems.  This is 
truly exciting because one can take advantage of the reduced 
cost, the lower demand for experience and the dramatically 
shorter experimental cycles of prokaryotic systems.  However, 
although this approach is very promising now, the applica-
tion of prokaryotic expression systems for structural studies 
requires further development.

Because certain GPCRs are currently produced at sufficient 
levels for X-ray crystallographic trials, it is speculated that het-
erologous expression of GPCRs may no longer be a bottleneck 
in obtaining crystal structures.  However, there remain many 
unknown factors that are important for optimizing GPCR 
expression.  It is not surprising to see >100 fold differences 
in yield among various GPCRs within each of the expression 
systems.  While milligram quantities of certain GPCRs are 
attainable, the majority of GPCRs are still either produced at 
very low levels or not at all.  Developing reliable expression 
techniques for GPCRs is still a major priority for the structural 
characterization of GPCRs.

It’s all about stability
Once acceptable expression is achieved, the issue of extracting 
the receptor out of the lipid bilayer starts to limit the down-
stream processes toward crystallization.  Most of the GPCRs 

are intrinsically unstable and quickly lose their native fold 
when solubilized[9].  It is generally known that protein stability 
is correlated to the chances of protein crystal formation, and 
this point has been repeatedly demonstrated by the Tate and 
Stevens groups.  Multiple methods have been carried out to 
engineer the receptor for higher stability.  

T4 lysozyme fusion 
The most successful attempt at engineering a GPCR to solve 
its structure is the generation of a T4 lysozyme fused protein.  
This was first developed during solving the high-resolution 
structure of the β2 adrenergic receptor[2, 40].  It has long been 
known that the third intracellular loop is very flexible, and is 
believed preventing the formation of crystals.  Replacing of 
this loops with the T4 lysozyme moiety will not only provide 
an additional surface for crystal contact, but also restrain the 
movement of the GPCR helix bundle and thus provides higher 
thermal stability[40].  Research also revealed that this replace-
ment does not alter either the GPCR’s ligand binding or signal 
transduction ability.  Subsequent research showed that this 
T4 lysozyme (T4L) fusion method is applicable to different 
GPCRs, even though the junction sites are slightly different 
and must be carefully screened[5, 6].  

Different methods are used to determine the best T4L 
fusion.  Initially, the insertion site was decided by receptor 
surface expression screening.  Together with determination of 
more GPCR structures, a more systematic screening method 
combining ligand-binding affinity, protein homogeneity and 
stability was developed[5, 6, 41].  Guided by this method, several 
structures were successfully solved including the chemokine 
receptor CXCR4 and the dopamine receptor D3.

Antibodies/nanobodies
The application of antibodies is a traditional method for 
dealing with flexible/instable proteins.  So far, two GPCR 
structures have been solved in the presence of antibodies that 
recognizing the receptor[10, 42], both of which are β2 adrenergic 
receptor structures.  Similar with the use of the T4 lysozyme 
fusion, these antibodies target the cytoplasmic side of the 
receptor, especially the unstructured intracellular loop 3 
(ICL3) region.  In the β2AR-Fab5 complex structure, the Fab5 
recognizes both the junction of the helix V to ICL3 (I233-V242) 
and the junction of ICL3 to helix VI (L266 and K270)[42], which 
will restrain the movement of these two helices.  Furthermore, 
in the β2AR-Nb80 complex, the nanobody Nb80 also specifi-
cally recognizes both helix V and helix VI in the cytoplasmic 
end.  In addition, its CDR3 loop inserted into the hydrophobic 
pocket between helices V/VI and helices III/VII[10].  These 
antibodies do help with the formation of crystal contacts, but 
their role in restricting the receptor dynamics is equally impor-
tant.  It looks like the helices V and VI are the key element to 
be stabilized before the receptor is actually crystalized.  

This method do improve our chances of getting crystals, 
however, the application of antibodies for GPCRs is not 
straightforward.  One major obstacle is the existence of very 
high concentration of detergents.  These receptors generally 
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require higher protein concentrations for crystallization (30–50 
mg/mL or higher), which typically requires at least a 100-fold 
concentration.  As a result, the detergent concentration in the 
final crystallization samples is strikingly high (approximately 
2% in the case of DDM), and some of these antibodies will dis-
sociate from the receptor molecules under such conditions.  
The fact that only the β2 adrenergic receptor has been crystal-
lized with the help of antibodies indicates that this method 
is equally challenging, and extensive work is needed before 
practical use.

Mutations
Besides the lysozyme fusion and antibodies, additional muta-
tions are generally needed to facilitate crystallization.  The 
most common is a E3.41W mutation, which was first intro-
duced in the β2 adrenergic receptor (the amino acid is repre-
sented using the Ballesteros-Weinstein numbering-system[43]).  
In the sequence alignment of β2 adrenergic receptor with 
other GPCRs, there is an hydrophilic glutamate residue in 
the middle of helix III that is buried in the hydrophobic helix 
bundle[44] (Figure 1B), which might reduce the stability to 
the whole receptor.  Mutation of this residue to an aromatic 
residue dramatically increases the yield of the purified mate-

rial and greatly improves the receptor’s melting temperature.  
Additional research showed that similar to the T4 lysozyme 
fusion, this mutation could also be applied to other receptors, 
even if their corresponding positions are already hydrophobic 
residues[5, 6] (Figure 1).  

In some cases, although the mutations themselves make the 
receptor stable enough to be crystalized, it remains difficult 
to explain the rationale for these mutants.  Tate and Schertler 
have mapped almost every residue in the receptor and mea-
sured the thermal stability of the corresponding mutants.  The 
most promising mutations were then combined and further 
screened for the highest stability to tolerate the harsh environ-
ment during extraction, purification and crystallization[38, 45].  
Guided by this method, they solved the crystal structures of 
the β1 adrenergic receptor with different ligands and the A2A 
adenosine receptor structure in an active state[4, 16].  Similarly, 
PLÜCKTHUN et al used error-prone PCR (epPCR) to construct 
a library of mutations of target gene which were expressed 
and sorted by flow cytometry to screen for higher expression 
or stability.  The sorted cells were kept and then epPCR and 
pooled for 4 rounds before they were analyzed for sequence 
diversity.  The most consistent mutations were selected and 
successfully applied to higher expression systems such as 

Figure 1.  Structural models of the TM4-3-5 interface, indicating the most frequent 3.41 (Ballesteros and Weinstein System) mutation in GPCR 
structures.  (A, B) Rhodopsin inactive state structure (PDB ID code 1U19) and β2AR structure showing residues proximal to 3.41. TM helices are colored 
grey and side-chains carbon atoms are colored green.  (C) Clustal W sequence alignment illustrating the residue conservation in TM3, TM4, and TM5 for 
the βARs, rhodopsin and several members of the biogenic amine family. Identical residues are highlighted in grey.  Key residues mentioned in the text 
are marked with asterisks.  Position 3.41 is highlighted in yellow[44].
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insect cells, and by this, higher expression and stability were 
then achieved[38, 39].

These three groups tested stabilization mutant using 5 
GPCRs independently and found some very interesting con-
sistencies[37–39, 45, 46].  Each of the five receptor genes contained 
5.6±1.1 mutants to maximize the protein stability compared to 
the wild type, with a total 28 mutants.  The majority of these 
mutations are located in the helix bundle (26 out of 28 muta-
tions), and they are not spread evenly on all the seven trans-
membrane helices (Figure 2).  Nearly half of the mutations are 
distributed from helix V through helix VII, where there was 
significant movement upon activation.  Surprisingly, helix II 
is also one frequently mutated region.  More than 30% of the 
stabilizing mutations occurred on this helix (9 out of 28 muta-
tions) for no obvious reason.  The other helices, especially 
helix IV, are barely touched which is probably due to it is 
nowhere near helix V, VI, or VII in the spatial helix bundle.  
Although only a few mutations appeared on identical posi-
tions, the majority of the mutations lie only in several specific 
pockets.  These pockets are located in the intracellular end of 
the receptor, and only a few mutations are located in the extra-
cellular half that facilitates the binding of certain ligands.  This 
is not completely unexpected, as research showed that the 
intracellular portion displayed more structural dynamics in 
different active state.  In contrast, the extracellular half, despite 
having significant diversity within the gene superfamily, has 
only very minor changes when different ligands are bound.

GPCRs have enormous conformational diversity, which is 
believed to be one of the key obstacles to crystallization.  To 

date, all the receptor analogs achieved from mutation screen-
ing had a modified binding preference depending on the type 
of ligands used[4, 16].  For example, in the structure of the A2A 

adenosine receptor bound to agonists adenosine and NECA, 
four mutations in the receptor greatly reduced the affinity with 
the antagonists, while the agonist binding was unaltered[16].  
The shift in binding affinity indicates that the receptor could 
only adopt restrained conformations, thus its stability and 
homogeneity were improved, which would further allow crys-
tallization.  Because most of these conformational restraining 
mutations are located in the intracellular portion of the GPCR 
where they are more conserved in both structure and sequence 
than the other regions, further studies could potentially reveal 
a general rule that could apply to the other GPCRs and guide 
our future studies.  

Surfactants
Traditionally, short-chain detergents form smaller micelles 
around membrane proteins than the long alkyl ones, which 
would leave larger surface areas exposed to form crystal con-
tacts.  However, these short-chain detergents are also far more 
denaturing than the long-chain detergents that are normally 
used to purify GPCRs in a functional form.  It is very challeng-
ing to choose a detergent that can balance the hydrophobicity 
and hydrophilicity for each target protein, and as a result, 
the crystals are often of low quality and difficult to improve.  
Based on the understanding achieved from previous X-ray 
crystallographic work, several new amphiphiles and deter-
gents have been developed by modifications of known surfac-

Figure 2.  A snake β2AR plot to brief summary of the muta
genesis studies aiming higher GPCR stability[37, 38, 44–46, 91]. The 
mutations on different receptors are applied to β2AR receptor 
based on the Ballesteros and Weinstein Number System[43] 
and labeled in red on the Figure. The post translational 
modifications such as glycosylation and phosphorylation are 
labeled as indicated.
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tants or de novo design.  Some of these novel amphiphiles (eg, 
nanodiscs and amphipols) have found broad application in 
membrane protein biochemistry and are used for solubiliza-
tion and stabilization of GPCRs for functional studies.

One example of these modified detergents is branch-chained 
detergent which contains a short, branched alkyl chain at the 
interface between the polar head and the apolar tail.  This type 
of detergent mimics a lipid molecule with a second aliphatic 
chain, reducing the water penetration.  Hong et al showed 
that even one carbon branch could have dramatic effects and 
these detergents could be successfully applied to solubiliza-
tion, stabilization and crystallization of membrane proteins[47].  
Another example of such detergents is maltose-neopentyl 
glycol (MNG) amphiphiles that are built around a central qua-
ternary carbon atom[48] (Figure 3A and 3B).  This carbon atom 
enables the incorporation of two hydrophilic and two hydro-
phobic subunits and restrains their conformational flexibil-
ity.  Some of these MNG detergents have been tested on both 
GPCRs and other membrane proteins, and proved to enhance 
structural stability and the chances of successful crystalliza-
tion.  The authors also claimed that these detergents improved 
the crystal size and quality of membrane proteins with less 
stability, such as β2AR-T4L bound to agonists.  In short, these 
modified detergents displayed distinct properties from their 
conventional analogs and have promising use in the mainte-

nance of native GPCR folding and function[48].
The de novo synthesis of detergents includes protein-based 

nanodiscs[49, 50], amphiphilic polymers (amphipols)[51–53], 
peptide-based amphiphiles[54–56], fluorinated detergents[53, 57] 
and tripod detergents[58, 59].  One good example is the so-
called “facial amphiphile”, which is a new detergent con-
cept created by several groups.  These detergents make the 
protein-detergent complexes (PDC) as small as possible by 
creating a flat and rigid hydrophobic surface.  McGregor et 
al have reported that lipopeptides (LPDs) are self-assembled 
into a cylindrical micelle with a width similar to that of a 
lipid bilayer, and further form a rigid sheath around the pro-
tein surface[55].  Zhang et al have developed cholate-based 
amphiphiles that project hydrophilic maltose units from one 
side of the steroidal skeleton, which is then further developed 
by the design of “tandem facial amphiphiles (TFAs)”[60, 61].  The 
TFAs contain a pair of maltose-functionalized deoxycholate 
units, making it long enough to match the bilayer width.  
These facial amphiphiles are very successful in reducing the 
micelle size.  Both Zhang et al and Chae et al showed that the 
facial amphiphiles are only approximately 1/6 of the micelle 
size compared to the traditional detergents such as DDM, with 
an aggregation number of approximately 37 for FAs and only 
approximately 6 for the TFAs per PDC[60, 61].  Although there 
is yet to be a direct application of these facial amphiphiles in 

Figure 3.  A brief summary of the new detergents to facilitate the GPCR structure study.  (A) MNG[48]; (B) branched detergent[47]; (C) tandem facial 
amphiphiles (TFA)[61]; (D) facial amphiphiles[60]; (E) a cartoon about the working hypothesis of facial amphiphiles and tandem facial amphiphiles in 
compare with conventional detergents[60]. 
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crystallization trials, their biophysical properties exhibit sig-
nificant potential in the structural study of this challenging 
protein family (Figure 3C, 3D, and 3E).  

Recently, systematic screening of the branched detergents, 
MNGs and the facial amphiphiles for protein thermal stabil-
ity was carried out using multiple GPCRs.  More than half of 
these new detergents provided equal or higher thermal stabil-
ity than the best conventional detergents (unpublished data).  
However, different GPCRs still have different preferences 
for different surfactants, and it seems very unlikely that one 
single amphiphile is ideal for all of the receptors due to their 
sequence variety.  A deeper understanding of the interaction 
between membrane proteins and detergents is still required 
for further development of detergents.  

Crystallization and data collection 
To solve the structures of GPCRs, high-quality crystals must 
be obtained, which represents a major challenge.  Several tech-
niques are employed to crystallize GPCRs, including the tradi-
tional direct use of solubilized protein-surfactant complexes, 
or the so-called in surfo method[4, 16], the bicelle method[10, 15], 
and the lipidic cubic phase, or in meso method.  

In surfo method 
Although the in surfo method remains one of the most efficient 
in membrane protein crystallography, it exhibits dramatic 
limitations in GPCR structural studies.  Research has shown 
that GPCRs tend to reserve more conformations in detergent 
micelles than in lipid bilayers, and as a direct result, very few 
GPCRs could crystallize directly in detergent micelles.  Most 
of the current GPCR structures obtained using the in surfo 
method are modified by mutation to reduce their chances of 
adopting other conformations[4, 16] as mentioned above.  

Bicelle method 
The other methods, such as the newly developed bicelles, 
nanodiscs or lipidic cubic phase (LCP), seek to trap each mem-
brane protein molecule within a lipid bilayer before crystal-
lization and take advantage of a native-like environment to 
preserve their integrity[62].  Compared to the in surfo method, 
the bicelle method uses a lipid bilayer of finite size and main-
tains the ability to diffuse in three dimensions in the process 
of forming a three-dimensional lattice (Figure 4A).  Bicelles 
are typically made of two lipids, one of which forms a lipid 
bilayer, while the other forms an amphipathic, micelle-like 
cover for the bilayer and shields it from the solvent[63].  The 
important interactions between lipids and proteins have been 
preserved within bicelles, as clear density for a CHAPSO 
molecule inserted between protein subunits is observed in the 
structure of bacteriorhodopsin.  The bicelles have displayed 
broad utilities in every aspect of GPCR study[64].  The ability 
to grow crystals at room temperature significantly expands 
the applicability of bicelle crystallization[42, 65].  Nanodiscs, on 
the other hand, use an amphipathic protein coat to encapsu-
late the bilayer segment instead of detergent, which makes 
nanodiscs more stable than bicelles at low concentrations[49, 66].  

The nanodisc is constrained by two molecules of a membrane 
scaffold protein that wraps around the edges of the discoidal 
structure in a belt-like arrangement.  These constructs main-
tain a very well-defined size depending on the type of protein 
coat[67].  Because the smallest nanodiscs are approximately 10 
nm, their application in crystallography is still quite limited, 
and more work needs to be performed to remove the 3-D 
packing restraints before successful crystallization.  To date, 
these bilayer-based, diffusible structures have been most use-
ful for NMR methods or for assessing the ligand binding of 
GPCRs[67–69].

In meso method 
Crystallization in lipidic phases has only recently been devel-
oped but has already become an essential tool in the arsenal of 
membrane protein crystallization, especially for GPCRs[70, 71].  
The cubic phase is a bicontinuous lipidic meso phase formed 
spontaneously by mixing monoacylglycerols (MAGs) and 
water at a given ratio[72] (Figure 4B).  It consists of a curved 
bicontinuous lipid bilayer in three dimensions, separating two 
congruent networks of water channels.  When protein samples 
are used as an aqueous solution, the high concentration of 
lipid molecules will replace the detergent molecules around 
the protein, and thus, the receptor is reconstituted to the lipid 
bilayer.  When a certain precipitant is added, the receptor will 
start to nucleate, and a temporary phase transition will be 
formed, ensuring crystal growth (Figure 4C).

Monoolein is a default lipid for crystallogenesis stud-
ies.  However, some other lipids such as monomyristolein 
(C14:1c9) and monopentadecenoin (C15:1c10) could also be 
used for crystallization studies.  The different host MAGs, or 
MAGs with different additives (usually cholesterol or phos-
pholipids), come with varying properties including hydro-
phobic thickness, intrinsic curvature, and lateral pressure 
profile[73, 74].  These lipids have shown a profound effect upon 
nucleation, crystal shape and diffraction in different targets[73].  
This method originated from Ehud Landau and Jürg Rosen-
busch in 1996 and was soon followed by application to bacte-
riorhodopsin[75, 76], the β2 adrenergic receptor[2], the chemokine 
receptor CXCR4[5], and the dopamine receptor D3[6].  

It should be safe to assume that during the conditions of 
crystallogenesis, receptor molecules have to retain a certain 
level of freedom to diffuse so that nucleation and crystal 
growth can occur.  As mentioned above, we learned that the 
lipidic cubic phase is composed of highly curved lipid bilay-
ers and is connected by a water channel of a certain size[77].  As 
proteins diffuse through the cubic phase, they encounter horse 
saddles of high Gaussian curvature[78].  In some cases, one 
could find their protein stuck inside the lipid bilayers, either 
due to the energy barrier of crossing the horse saddle and the 
monkey saddle, or due to the limited size of the water channel.  
Several groups have tried to build a computational model, but 
they had little success[78, 79].  The reason for failure might be 
that there are several components in the crystallization trials, 
quite a few of which, such as salt, PEGs and trace amounts of 
detergent, could alter the dimensions or even the phase behav-
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ior of the whole system[80, 81] (Figure 4D).  
Unlike the theoretical analysis, progress was made by exper-

imental studies of the lipidic cubic phase guiding the crystalli-
zation studies.  One powerful approach, fluorescence recovery 
after photobleaching (FRAP), seeks to assess the ability that 
GPCRs have while in the lipidic bilayer-based meso phase and 
identify conditions that favor diffusion in two dimensions as 
freely as possible to find other protein partners with which to 
build the two-dimensional array[82].  A major advance is the 
application of fluorescence to assay the diffusion rates, seeking 
conditions that maximize the diffusibility.  Based on the FRAP 
method, high throughput FRAP (HT-FRAP), which combines 
traditional FRAP with an automation technique, was further 
developed and showed a dramatic advance in reducing the 
work load[83].  Instead of measuring the full recovery curve, 
the precise motion control allows it to scan a 96-well plate and 
compare exact spots at different time points, which increases 

the measurement efficiency by approximately 50 fold.  This is 
a key element for the application of this technique to practi-
cal research.  Using this method, one can now pre-screen host 
lipids, precipitant conditions, and identities of ligands with 
microgram quantities of material to magnify the chances of 
crystallogenesis and rule out conditions that are not condu-
cive to diffusion, nucleation, and crystal growth[83].  LCP-Tm, 
another LCP tool to measure the stability of the receptor in the 
host’s lipids without the use of labels, will also facilitate the 
screening of better constructs and ligands[84].  Assisted by dif-
ferent LCP tools, the variables of the multi-dimensional crys-
tallization space are notably reduced, and thus, the bottleneck 
in obtaining initial crystal leads is substantially overcome.

Of course, like any other crystallization technique, the in 
meso method has its own drawbacks: it is relatively hard to 
handle, incompatible with some of the precipitants, rather 
small that are general invisible under cryo conditions.  To 

Figure 4.  Phase diagram of lipidic cubic phase use Monoolein.  A) A representative figure of GPCR in bicelle.  The receptor is surrounded by a DMPC 
lipid bilayer, which is further covered by detergents.  The receptor-lipid-detergent is afloat in the solution.  D) the phase-temp diagram of Monoolein and 
water system[72], the phase will transit as lipid:water ratio or temperature change; C) crystallization of GPCRs in cubic phase, the receptor is in cartoon, 
the bicontinuous lipid bilayer is drawn in yellow and white and the dark blue represents the water channel and aqueous solution; D) Phase behavior of 
lipid-water-PEG400 system, representing the influences of additives and lipids on the phase[81].
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make things worse, to generate crystals of sufficient qual-
ity so that their structure may be obtained, the lipidic cubic 
phase generally requires a  higher receptor concentration (>50  
mg/mL)[2, 5, 6, 14], which challenges the already troubled expres-
sion and purification protocols of GPCRs.  Most of the above 
obstacles are diminished by the development of robotic sys-
tems and microfocus beams.  Robotic crystallization technolo-
gies, which can dispense subnanoliter-scale drops in 96-well 
plates within minutes, have expended the use of the lipidic 
cubic phase by substantially increasing the number of crystal-
lization conditions that can be explored with limited amounts 
of sample[72, 85].  Another recent innovation is the microfocus 
beamline at synchrotrons[86], which makes data collection from 
the undersized GPCR crystals possible.  Smaller X-ray beams, 
reduction of the diffraction background, and an increase in 
the beam intensity remarkably improve the resolution and the 
data statistics compared to the general synchrotron beams, and 
allow useful diffraction data to be extracted from smaller crys-
tals[2, 86].  Although tighter focus comes at the cost of greater 
radiation damage to the crystal, it can be overcome by merg-
ing data from several or even tens of crystals[2, 6] (hundreds in 
some cases, data unpublished) and newer detectors[87].  Some 
other techniques, although not as essential as microfocus 
beams or crystallization robots, significantly improve research 
efficiency.  Sample-exchange robots that allow crystals to be 
replaced without entering the experimental hutch are show-
ing more and more impact on X-ray diffraction data collection.  
Rapid crystal alignment and raster tools will further acceler-
ate the systematic screening of invisible crystals in the cryo 
loops, and more crystals could be tested in a shorter amount 
of time[88–90].  With the combination of the benefits from all the 
above techniques, the lipidic cubic phase is becoming the most 
popular method in determining the structures of GPCRs.

Future prospects
Structure-based drug design targeting of G-protein coupled 
receptors has long been limited by the availability of high-
resolution receptor structures.  However, this limitation is 
decreasing, as multiple GPCR structures have been deter-
mined.  The year 2011 could be considered a new landmark 
for understanding this largest drug target family.  In this year, 
not only have new GPCR structures been obtained, but also 
structures of activated receptors and even the magnificent 
structure of the GPCR-G protein complex.  These structures, 
and the purified membrane proteins that are produced before 
the structures are resolved, will enable us to develop a rational 
approach to the treatment of cancer, autoimmune diseases, 
and infectious diseases that endanger human health.  This new 
progress also indicates that we are starting to understand how 
GPCRs function in response to the binding of a natural ligand 
or a drug.  This is also a direct result of the unremitting devel-
opment of techniques during the last few years.  The intro-
duction of effective new tools for the membrane structural 
biologist reflects the ingenuity of the current researchers and 
lays the groundwork for applications to numerous diseases.  
It is safe to expect more structures in the near future as newer 

techniques, tools, chemicals and protocols will be applied to 
research that will further shorten the timeline and reduce the 
resources needed for solving a GPCR structure.
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β-adrenergic receptor (βAR) stimulation by the sympathetic nervous system or circulating catecholamines is broadly involved in 
peripheral blood circulation, metabolic regulation, muscle contraction, and central neural activities.  In the heart, acute βAR stimu-
lation serves as the most powerful means to regulate cardiac output in response to a fight-or-flight situation, whereas chronic βAR 
stimulation plays an important role in physiological and pathological cardiac remodeling.  

There are three βAR subtypes, β1AR, β2AR and β3AR, in cardiac myocytes.  Over the past two decades, we systematically investi-
gated the molecular and cellular mechanisms underlying the different even opposite functional roles of β1AR and β2AR subtypes in 
regulating cardiac structure and function, with keen interest in the development of novel therapies based on our discoveries.  We 
have made three major discoveries, including (1) dual coupling of β2AR to Gs and Gi proteins in cardiomyocytes, (2) cardioprotection 
by β2AR signaling in improving cardiac function and myocyte viability, and (3) PKA-independent, CaMKII-mediated β1AR apoptotic 
and maladaptive remodeling signaling in the heart.  Based on these discoveries and salutary effects of β1AR blockade on patients 
with heart failure, we envision that activation of β2AR in combination with clinically used β1AR blockade should provide a safer and 
more effective therapy for the treatment of heart failure.
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Review

Introduction
Heart failure (HF) is a syndrome characterized by the insuf-
ficient pumping of blood to meet the need of the body.  It is 
a chronic and severely debilitating disease with people older 
than 65 composed more than 75% of all cases[1].  Regardless of 
the cause, the failing heart usually ends up in a viscous cycle 
of progressive functional decline.  Owing to its high preva-
lence, morbidity, mortality and significant health-care costs, 
HF represents a major current health problem in China and 
its prevalence is in an upward trend as atherothrombotic dis-
eases, which often lead to HF, will be the first cause of death 
in the world by 2020[2].

In congestive HF, both the activities of the sympathetic 
nervous system and the renin-angiotensin system (RAS) are 
increased[3].  Initially, the increased activity of these neurohor-
monal systems serves to compensate for the reduced blood 
pressure and cardiac output.  But long term exposure to high 
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levels of circulating catecholamines and angiotensin increases 
the workload of the heart, and causes maladaptive cardiac 
remodeling and myocyte death[4–6].  Many of these effects 
appear to be mediated by the signal transduction cascades of 
the receptors involved.

β-Adrenergic receptor (βAR) and angiotensin receptor 
belong to the superfamily of G protein-coupled receptors 
(GPCRs) or seven transmembrane receptors.  GPCRs consti-
tute the most ubiquitous of plasma membrane receptors.  They 
are involved in the regulation of many important physiologi-
cal functions and also serve as the most important drug tar-
gets[7].  Over the past 25 years, βAR antagonists (β-blockers), 
angiotensin converting enzyme inhibitors (ACEIs) and angio-
tensin II receptor blockers (ARBs), alone or in combination, 
have been used to treat HF conditions.  Their use ameliorates 
the deterioration of left ventricular function, improves symp-
toms and hemodynamics, and decreases the mortality rate and 
the need for hospitalization[8–11].  However, these therapeutic 
agents have limited effectiveness in some patient populations 
and they also have some adverse effects.  Therefore, there is a 
compelling need to develop new treatments that can improve 
clinical outcomes.
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Subtype-specific βAR signaling in the heart
βARs exist as three subtypes, β1, β2, and β3, and the former 
two are important in the regulation of excitation-contraction 
coupling of myocardium.  β1AR is the predominant recep-
tor subtype expressed in the heart.  Its stimulation results in 
the activation of the Gs-adenylyl cyclase (AC)-cAMP-protein 
kinase A (PKA) signaling cascade.  In ventricular myocytes, 
the phosphorylation of PKA substrates including phospho-
lamben, L-type calcium channel, ryanodine receptor, cardiac 
troponin I, and cardiac myosin-binding protein C results in 
the increase in calcium transient and contractility.  In pace-
maker cells, PKA-mediated phosphorylation of membrane ion 
channels and Ca2+ handling proteins increases Ca2+ cycling 
and pacing rate.  Similarly, β2AR also has a functional role in 
cardiomyocyte contraction[12].  But unlike β1AR which couples 
only to Gs, β2AR also couples to pertussis toxin (PTX)-sensitive 
Gi proteins[13].  The β2AR-Gi signaling has negative effects on 
AC activity, cAMP synthesis, PKA activation, and the inotro-
pic response mediated by Gs.

Importantly, persistent stimulation of β1AR and β2AR 
exhibits distinct outcomes under certain pathological cir-
cumstances such as HF.  Specifically, persistent stimulation 
of β1AR triggers cardiomyocyte apoptosis by a Ca2+/calmod-
ulin-dependent kinase II (CaMKII)-dependent, but PKA in-
dependent mechanism[14].  Furthermore, the β1AR-activated 
CaMKII signaling, but not the PKA pathway, is involved in 
catecholamine-induced cardiomyocyte hypertrophy in vitro[15] 
and maladaptive cardiac remodeling in vivo[16, 17].  In contrast 
to the cardiotoxic effects of persistent β1AR activation, persis-
tent β2AR stimulation is cardioprotective.  The cardioprotec-
tive effect of persistent β2AR signaling is largely mediated by 
β2AR-Gi coupling, which activates the Gβγ-phosphoinositol 
3-kinase (PI3K)-Akt cell survival pathway[18].  Although ben-
eficial in terms of cardiomyocyte viability, the protective effect 
of β2AR comes at the cost of compromised contractile support.

Heart failure-associated alterations in βAR signaling
During HF, β1AR is persistently downregulated at the mRNA 
and protein levels[19, 20].  Its density on the plasma membrane 
is reduced by 50%, while that of β2AR has no such change[21].  
The resulting change in the ratio of β1/β2AR from an 80:20 
distribution in the healthy heart to a ratio of 60:40 in the fail-
ing heart may indicate the prominent role of β2AR signaling in 
the disease condition.  In the failing heart, the selective down-
regulation of β1AR is often associated with an upregulation 
of Gi and an enhanced β2AR-Gi signaling[22, 23].  Importantly, 
the β1AR-mediated contractile response is cross-inhibited by 
the enhanced β2AR-Gi signaling in the failing heart.  Thus, the 
enhanced β2AR-Gi signaling contributes to the dysfunction of 
both β1AR- and β2AR-Gs signaling in the failing heart[24–27].

In addition, the signaling efficiency of β1AR is also mark-
edly reduced in the failing heart as a result of desensitiza-
tion[28].  This is attributed, in part, to a significant increase in 
the expression level of G protein coupled receptor kinase 2 
(GRK2)[29], the prototypical member of the GRK family.  The 
process of βAR desensitization involves a series of events, 

including (a) the translocation of GRK2 to the plasma mem-
brane facilitated by the free Gβγ subunits liberated from the 
activated heterotrimeric G proteins[30], (b) the phosphoryla-
tion of the serine or threonine residues on the C-terminal tail 
of βARs by GRK2, (c) the recruitment of β-arrestins to the 
phosphorylated receptor, the physical displacement of Gsα 
from the β-arrestin-associated receptor, and (d) the β-arrestin-
dependent internalization of the receptor (endocytosis)[31].  
While β2AR stays at a similar level in the failing heart, its 
coupling efficiency to Gs is markedly reduced[21].  Desensitiza-
tion of βARs leads to reduced Gs-mediated responses such 
as cAMP production and positive inotropic effect.  Although 
receptor downregulation and desensitization are considered to 
be protective responses against excessive sympathetic stimula-
tion during HF[32, 33], the resultant abnormality in βAR signal-
ing may lead to the activation of signaling pathways that are 
involved in cardiac remodeling, such as the PI3K cascades[34].

Indeed, in humans or animal models with HF, chronic cat-
echolamine elevation causes marked dysregulation of βARs, 
resulting in various molecular abnormalities, including the 
upregulation of GRK2[29, 35] and Gi proteins[22, 23, 36].  Upregula-
tion of both of these proteins have been implicated as causal 
factors in the development of HF.  In particular, GRK2 is the 
most abundant and best-characterized GRK in the heart[37].  
GRK2 expression and activity are markedly elevated and play 
a central role in the HF-associated defect in βAR signaling[38] 
and cardiac dysfunction[39].  Myocardial ischemia and hyper-
tension in humans and animal models have also been associ-
ated with elevated GRK2 expression and activity[40, 41].  These 
previous studies have defined GRK2 upregulation as an early 
common event in cardiac maladaptive remodeling and HF.

Emerging evidence suggests that activation of GRK2 as 
well as PKA is essentially involved in the activation of the 
β2AR-coupled Gi signaling in mammalian cells.  First, early 
work has shown that β2AR-induced activation of ERK1/2 in 
HEK293 cells is mediated by a Gi-dependent mechanism, and 
that phosphorylation of β2AR by PKA is a prerequisite for 
the switch of the receptor coupling from Gs to Gi

[42].  Second, 
our recent studies[43] have demonstrated that elevated β2AR 
phosphorylation by GRK2 acerbates the Gi signaling, whereas 
inhibition of GRK2 activity profoundly suppresses the 
β2AR-Gi coupling.  Since GRK2 upregulation occurs prior to 
the onset of HF and contributes to the development of HF[44, 45], 
enhanced GRK2 activation may play an important role in the 
exacerbated β2AR-coupled Gi signaling in the failing heart.  
Indeed, disruption of Gi signaling with PTX or inhibition of 
GRK2 with a peptide inhibitor, βARK-ct, can restore cardiac 
contractile response to βAR stimulation in multiple HF mod-
els[46–49].  

Importantly, cardiac-specific transgenic overexpression of 
a mutant β2AR lacking PKA phosphorylation sites (PKA-TG), 
but not the wild type β2AR (WT TG) or a mutant β2AR lack-
ing GRK sites (GRK-TG), led to exaggerated cardiac response 
to pressure overload, as manifested by markedly exacerbated 
cardiac maladaptive remodeling and failure, and early mor-
tality[43].  Furthermore, inhibition of Gi signaling with PTX 
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restores cardiac function in HF associated with increased β2AR 
to Gi coupling induced by removing PKA phosphorylation 
of the receptor and in GRK2 transgenic mice, indicating that 
enhanced phosphorylation of β2AR by GRK and resultant 
increase in Gi-biased β2AR signaling play an important role 
in the development of HF[43].  Altogether, our recent studies 
have demonstrated that enhanced β2AR phosphorylation by 
GRK leads the receptor to Gi-biased signaling which, in turn, 
contributes to the pathogenesis of HF, marking Gi-biased β2AR 
signaling as a primary event linking pathological upregula-
tion of GRK to cardiac maladaptive remodeling, failure and 
cardiodepression.  It is also noteworthy that, as is the case 
in the failing heart, enhanced β2AR-coupled Gi signaling is 
responsible for the defects of both β1AR and β2AR signaling in 
the GRK2 transgenic mice[43], and that the previously reported 
beneficial effects of βARK-ct in improving the function of the 
failing heart[38, 39, 50-52] is mediated, at least in part, by attenuat-
ing GRK-dependent Gi-biased β2AR signaling.

Carvedilol paradox
In clinical settings, long-term use of β-blockers improves clini-
cal symptom of HF.  Treatment with β-blockers improves 
left ventricular contractile function in the failing heart and 
reverses cardiac remodeling[8, 9].  In the molecular level, 
β-blockade may normalize βAR system through the upregula-
tion of β1AR[53] and the restoration of receptor sensitivity by 
decreasing the expression of GRK2[50].  However, the effects of 
different β-blockers are not identical.  The use of subtype non-
selective β-blockers in early years has caused some major side 
effects including bronchial and blood vessel constriction[54, 55].  
This is largely due to the inhibition of β2AR in non-cardiac tis-
sues such as the respiratory system and blood vessels.  These 
problems have been partially resolved with the introduction of 
selective β1AR antagonists, such as atenolol, metoprolol, biso-
prolol and nebivolol.  Recent clinical trials have indicated that 
only 3 out of 16 β-blockers are beneficial in terms of cardiovas-
cular survival[9, 56–58], with carvedilol emerging as the best[59].  

Apart from being a non-selective β-blocker, carvedilol also 
has several properties, such as α1-adrenergic blockade, anti-
oxidant, anti-proliferative, anti-endothelin and anti-arryth-
mogenic effects[60, 61], which may explain its higher efficacy.  
Interestingly, carvedilol has been found to be the only one 
among 16 blockers that activated ERK by a β2AR-mediated, G 
protein-independent, and β-arrestin-dependent mechanism[62].  
Moreover, among 20 β-blockers tested, only atenolol and 
carvedilol could induce the β1AR-mediated transactivation 
of EGFR and this effect is also β-arrestin-dependent[63].  It has 
been implicated that this effect may contribute to the special 
therapeutic effect of carvedilol.  In this regard, recent studies 
have shown that β-arrestin-dependent, G protein-independent 
activation of EGFR via β1AR confers cardioprotection in mice 
chronically stimulated with catecholamine[64].  These data sug-
gest that a ligand can antagonize the G protein-dependent 
activity of a GPCR and at the same time stimulates signaling 
pathways in a G protein-independent β-arrestin-dependent 
fashion[65].  They are also of great relevance to our discussion 

in the next section about the application of this principle in the 
development of novel therapeutic agents.

Biased βAR signaling and drug discovery
In the classical paradigm of GPCR signaling, ligand binding 
leads to conformational change of the receptor from an in-
active state R into a single activated state R* that results in the 
coupling of the receptor to heterotrimeric G proteins.  Receptor 
coupling facilitates the exchange of the bound GDP with GTP 
in the α subunit of the G protein complex.  This triggers disso-
ciation of the complex into Gα and Gβγ subunits.  They go on to 
activate their respective effectors such as AC, phospholipases 
and ion channels.  These receptor mediated reactions often 
generate signaling molecules called second messengers which 
activate or inhibit other components of the cellular machinery.  
Thus, receptor stimulation produces a multitude of cellular 
responses via the activation of the signal transduction path-
ways downstream of G proteins.  Agonist efficacy, a measure 
of the ability of an agonist to activate this cascade, quantita-
tively defines the agonist as partial or full.  In this scheme, 
antagonist is defined as a ligand which binds to the receptor 
but produces no receptor activation and thus has the ability to 
block agonist-stimulated G protein activation.  This unidirec-
tional understanding of agonist efficacy is contradictory to the 
aforementioned findings that a ligand for a single GPCR can 
be an antagonist for the G protein-dependent signals and also 
an agonist for the β-arrestin-dependent signals[62, 63].

Over the past fifteen years, more and more evidence has 
accumulated indicating that a ligand for a given GPCR does 
not simply possess a single defined efficacy.  Rather, a ligand 
possesses multiple efficacies, depending on the downstream 
signal transduction pathways analyzed.  Moreover, GPCR can 
be differentially activated to target a specific subset of signal 
transduction pathways by the so-called “biased ligand”.  In 
particular, research has revealed that GPCR can be stimulated 
to produce a β-arrestin-dependent but G protein-independent 
signal, which differs both spatially and temporally from the 
β-arrestin-mediated signal stemmed from receptor desen-
sitization[66].  It is believed that the β-arrestin-biased ligand 
activates the alternative signaling pathway by stabilizing the 
receptor in a distinct active conformation R*’.  Thus, in this 
new paradigm, GPCR may be stabilized by different ligands in 
distinct active conformations R*1-R*n each capable of activating 
a diverse array of signal transduction pathways and responses 
(Figure 1).  This concept, described as functional selectivity, 
collateral/pluridimensional efficacy, or biased agonism, has 
major implications for pharmacological therapeutics[65, 67–70].

To add another layer of complexity to this scheme, the sig-
nal trafficked by a biased agonist is context-dependent, too.  
Not only does the selectivity of a ligand towards different sig-
naling pathways change in different cell types, the change in 
the levels of cytosolic reactants of GPCR also has an impact on 
the functional selectivity of a ligand.  For example, the specific 
β2AR antagonist ICI-118551 has been suggested to directly 
produce a negative inotropic effect by acting as an agonist for 
the Gi-coupled β2AR in myocytes from failing human heart[71].  
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This effect is not due to the blocking of the endogenous cat-
echolamines and is also different in principle from an inverse 
agonistic effect also described for this ligand[72].  It is because 
this negative inotropic effect of ICI-118551 is PTX-sensitive, is 
observable at receptor levels with or without overexpression 
manipulation, and only becomes apparent under the condi-
tions when the levels of Gi are raised.

In a recent study using a cardiomyocyte model[49], we 
have screened a panel of β2AR agonists, including zinterol, 
salbutamol, and procaterol for their receptor-mediated con-
tractility stimulatory activities and the sensitivities of these 
effects towards PTX.  We have found that PTX augmented the 
contractile responses of most β2AR agonists but not that of 
fenoterol.  These data indicates that while most β2AR agonists 
activate both Gs and Gi, fenoterol selectively activates Gs.  This 
is the first evidence to show that different agonists can activate 
a receptor to couple to different G-proteins.  It was further 
found that fenoterol fully reversed the diminished β2AR-
mediated inotropic effect in cardiomyocytes isolated from fail-
ing spontaneous hypertensive rat hearts even in the absence 
of PTX.  This study is particularly valuable in that fenoterol 
was identified to be a unique agonist capable of selectively sta-
bilizing the coupled β2AR-Gs species in conditions that favor 
β2AR-Gi coupling.  It also reveals the therapeutic potential of 
fenoterol in the treatment of HF.

The effectiveness of fenoterol in treating HF conditions has 
been demonstrated in a number of follow-up in vivo stud-
ies[73–76].  Prolonged use of fenoterol not only improves cardiac 
function, but also retards cardiac maladaptive remodeling, and 
that the overall beneficial effects of fenoterol are greater than 

the salutary effects of β1AR blockade in a myocardial infarc-
tion induced rat model of dilated cardiomyopathy[73].  These 
studies suggest that selective activation of the β2-AR-coupled 
Gs signaling may provide a useful therapeutic target for the 
treatment of congestive HF.  We envision that new Gs-biased 
β2AR agonists, such as fenoterol and its derivatives, may be 
developed into drugs to improve the structure and function of 
the failing heart.

Fenoterol contains two chiral centers and can exist as four 
stereoisomers.  We have synthesized a cohort of fenoterol 
derivatives including the R,R-, R,S-, S,R-, and S,S-isomers[77, 78].  
While the pharmaceutical preparation of fenoterol is a racemic 
mixture of its R,R- and S,S‑enantiomers, our recent studies 
have shown that the R,R‑enantiomer is the only active isomer 
in receptor binding and cardiomyocyte contraction assays[77, 78].  
It has been known for a century that stereoisomers of cat-
echolamines differ in their potency and efficacy.  However, 
the molecular basis for the differences in the efficacies of 
GPCR ligand stereoisomers has remained poorly defined.  We 
have, therefore, used some of these fenoterol derivatives to 
examine the hypothesis that the stereochemistry of an agonist 
determines functional selectivity of a given receptor coupling 
to different G protein(s) and resultant activation of subset(s) 
of downstream signaling pathways[79].  We found that while 
R,R-fenoterol failed to activate Gi signaling, as evidenced by 
the absence of PTX-sensitivity of its contractile response and 
its inability to activate Gi-dependent ERK1/2 signaling, S,R-
fenoterol exhibited a robust PTX-sensitivity in these responses, 
suggesting that the S,R-isomer enables β2AR to activate both 
Gs and Gi.  The same conclusion holds true for some fenoterol 
derivatives.  For instance, S,R-methoxyfenoterol, but not R,R-
methoxyfenoterol, activated β2AR-coupled Gi signaling in 
cardiomyocytes[79].  Thus, in addition to receptor subtype and 
phosphorylation status, the different stereoisomers of an ago-
nist selectively activate distinct receptor-G protein interactions 
and downstream signaling events.  This finding is important 
because it is the first account to show that even the subtle 
chemical differences within a ligand stereoisomer pair are suf-
ficient to stabilize GPCR conformations with distinct G-protein 
coupling properties, highlighting how important it is to care-
fully examine both the “active” and the “inactive” stereoiso-
mer to understand the exact mechanism of action and cellular 
effects of a GPCR ligand[80].

This finding also has important clinical implications.  In 
particular, it has been shown that long-term (1 year) treatment 
with racemic fenoterol enhances the beneficial effect of β1AR 
blockade with metoprolol in a rat model of dilated cardiomyo-
pathy[75], and the combined (fenoterol+metoprolol) therapy is 
as good as the clinical combination (metoprolol+ACEI) treat-
ment with respect to mortality, and exceeds the latter with 
respect to cardiac remodeling and myocardial infarct expan-
sion[76].  It will be interesting to study the effects of different 
fenoterol derivatives[77, 78, 81] alone or in combination with β1AR 
blocker or RAS inhibitor in this model.  Continued efforts on 
this research line may lead to the development of potential 
novel therapies with greater selectivity, efficacy and fewer side 

Figure 1.  Development of the receptor theory.  In the classical paradigm, 
ligands have linear efficacies, referring to their abilities to stabilize the 
receptor into a single active state.  The emerging concept of biased 
agonism suggests that a biased ligand may stabilize the receptor into 
a distinct active state that does not activate G proteins but activates 
β-arrestins.  In the concept of functional selectivity, receptors may exist in 
multiple active conformations as stabilized by different ligands, and each 
of these conformations gives rise to different downstream signals and 
biological effects.  βArr, β-arrestin; L, ligand; R, inactive conformation of 
GPCR; R*, active conformation of GPCR.
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effects for human congestive HF.  Topics related to the trans-
lation of this novel treatment regimen have been discussed 
extensively in another recent review[82], which also contains 
a pathway map for βAR subtype signaling described in this 
article.

If suppression of β2AR-Gi signaling or enhancement of 
β2AR-Gs signaling is beneficial in HF, the next question is: 
what is the difference between β2AR-Gs signaling and β1AR-Gs 
signaling?  In a recent elegant study[83], Mangmool and co-
authors have elucidated the molecular mechanism of CaMKII 
activation by β1AR.  They found that stimulation of β1AR 
induces the formation of a β-arrestin-CaMKII-Epac1 com-
plex, allowing its recruitment to the plasma membrane, and 
whereby promotes cAMP-dependent activation of CaMKII.  
Further studies using chimeric receptors with switched car-
boxyl-terminal tails of β1AR or β2AR suggested that β-arrestin 
binding to the carboxyl-terminal tail of β1AR promotes a con-
formational change within β-arrestin that allows CaMKII and 
Epac to remain in a stable complex with the receptor.  These 
results demonstrate that only β1AR but not β2AR activates 
CaMKII significantly.  As CaMKIIδ is a common intermediate 
of diverse death stimuli-induced apoptosis in cardiomyo-
cytes[84], is required for the transition from pressure overload-
induced cardiac hypertrophy to HF[85], and promotes life-
threatening arrythmias in HF[86], this explains why activation 
of β2AR-Gs signaling is usually not accompanied with the 
adverse effects observed in β1AR stimulation.  

The molecular mechanism of the cardioprotective effect 
of β2AR-Gs signaling in HF is unclear.  One possibility is the 
crosstalk of the Gs-AC-cAMP-PKA cascade to the tyrosine 
kinase receptor-mediated Akt phosphorylation[87–89].

Concluding remark
In summary, recent studies have revealed opposing functional 
roles of β1AR and β2AR in regulating myocyte viability and 
myocardial remodeling with a cardiac protective effect of 
β2AR stimulation and a detrimental effect of β1AR stimulation.  
Unlike the sole Gs coupling of β1AR, β2AR couples to both Gs 
and Gi signaling pathways with the Gi coupling negating the 
Gs-mediated contractile support.  In the failing heart, enhanced 
expression and activity of GRK2 and Gi proteins further pro-
mote Gi-biased β2AR signaling, thus blunting both β1AR- and 
β2AR-mediated cardiac reserve function, resulting in cardiac 
maladaptive remodeling and failure.  These findings defined 
the β2AR-Gi signaling as an essential link between pathologic 
upregulation of GRK and the development of HF.  Since GRK2 
and resultant Gi-biased β2AR signaling are pathogenic fac-
tors of HF, Gs-biased β2AR agonists may present an important 
therapeutic strategy for the treatment of HF caused by various 
etiologies.
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G protein-coupled receptors (GPCRs) play important roles in inflammation.  Inflammatory cells such as polymorphonuclear leuko-
cytes (PMN), monocytes and macrophages express a large number of GPCRs for classic chemoattractants and chemokines.  These 
receptors are critical to the migration of phagocytes and their accumulation at sites of inflammation, where these cells can exacer-
bate inflammation but also contribute to its resolution.  Besides chemoattractant GPCRs, protease activated receptors (PARs) such 
as PAR1 are involved in the regulation of vascular endothelial permeability.  Prostaglandin receptors play different roles in inflam-
matory cell activation, and can mediate both proinflammatory and anti-inflammatory functions.  Many GPCRs present in inflamma-
tory cells also mediate transcription factor activation, resulting in the synthesis and secretion of inflammatory factors and, in some 
cases, molecules that suppress inflammation.  An understanding of the signaling paradigms of GPCRs in inflammatory cells is likely 
to facilitate translational research and development of improved anti-inflammatory therapies.  
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Introduction
Inflammation is characterized by the cardinal signs of rubor 
(redness), calor (heat), dolor (pain), tumor (swelling) and func-
tion laesa (loss of function).  These signs reflect tissue response 
to inflammatory factors that are either external (eg, bacterial 
endotoxin) or host-derived (eg, TNFα).  GPCRs contribute 
directly to these clinical manifestations due to their wide pres-
ence and diverse functions.  Inflammation is shaped not only 
by leukocytes that accumulate at the site of inflammation, 
but also by cells in specific tissues and organs such as micro-
glial cells in the brain and synovial fibroblasts in the joints.  
Endothelial cells in all tissues are actively involved in the 
process of inflammation and interact closely with leukocytes.  
GPCRs expressed in these cells play important roles in sensing 
the presence of chemoattractants, transducing signals that lead 
to the production of inflammatory cytokines, nociception, and 
regulation of intracellular and intercellular communications 
associated with increased blood flow and increased vascular 
endothelial permeability.  Functions mediated by GPCRs can 
both exacerbate inflammation and promote its resolution.  

GPCRs that mediate cell migration and phagocyte 
activation 
It was long observed that phagocytes have the abilities to 
chase, capture and eventually eliminate invading bacte-
ria.  Based on observations made in the last century, it was 
reported that phagocytes could respond to small molecules 
derived from invading bacteria and fungi[1].  In addition, these 
cells also respond to substances produced by the host during 
the course of sterile inflammation.  A number of small mol-
ecules was discovered in the 60’s and 70’s, including activated 
complement C5a and N-formylated peptides of bacterial ori-
gin[2–4].  Evidence that these “classic chemoattractants” act on 
GPCRs first came from the observation that pertussis toxin 
(PTX) could alter the binding affinity of chemotactic formyl 
peptides[5], a characteristic feature of certain GPCR ligands[6].  
Working independently, two laboratories reported that PTX 
could block formyl peptide (eg, fMet-Leu-Phe, fMLF)-induced 
neutrophil functions through ADP-ribosylation of the Gi class 
of heterotrimeric G proteins[7, 8].  These early studies dem-
onstrate that the chemotactic peptide receptor functionally 
couples to a heterotrimeric G protein that is a substrate for 
ADP-ribosylation by PTX.  Further characterization of the PTX 
substrate, also termed “islet-activating protein”, found it to be 
a member of the Gi family of G proteins[9] that is critical to a 
variety of activities downstream of chemoattractant receptor 
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signaling.  The identity of the receptors for fMLF and C5a was 
first revealed, among all chemoattractant receptors, through 
molecular cloning of their cDNAs and analysis of the deduced 
protein sequence[10, 11].  It was confirmed that these receptors 
belong to the rhodopsin-like, 7-transmembrane (TM) receptor 
superfamily[12, 13].  Following these initial cloning efforts, other 
classic chemoattractant receptors including those for platelet-
activating factor (PAF) and leukotriene B4 (LTB4), were sub-
sequently identified as GPCRs[14, 15].  

Chemokines (chemotactic cytokines) are small proteins with 
cysteine residues located at fixed positions.  A large num-
ber of chemokines have been identified in the mid-80’s and 
early 90’s.  These chemokines bind to rhodopsin-like GPCRs, 
although not all of them are signaling receptors[16, 17].  Stud-
ies of patients with inflammatory disorders found induced 
expression of many chemokines, indicating that these small 
proteins play important roles in the development and pro-
gression of inflammatory diseases.  Published reports have 
also shown that genetic deletion of selected chemokine recep-
tors causes reduction in the severity of inflammation in vari-
ous animal models.  For instance, deletion of the CCR2 gene 
markedly reduced lesion in athrosclerosis-prone ApoE-null 
mice[18].  Atherosclerosis is an inflammatory disorder and the 
expression of CCL2, the ligand for CCR2, is upregulated in the 
atherosclerotic plaque and contributes to local accumulation of 
monocytes.  In addition, CCR2 also contributes to the develop-
ment of multiple sclerosis, rheumatoid arthritis, scleroderma 
and ischemia-reperfusion injury.  Receptors for the CXCL 
class of chemokines are found in neutrophils.  Among these 
GPCRs, CXCR1, and CXCR2 are involved in the pathology 
of myocardial infarction.  CXCR1 and CXCR2 interact with 
CXCL1, CXCL2, and CXCL8, which are present during acute 
inflammation and acute injury.  These chemokines are primar-
ily responsible for the recruitment of neutrophils to the site 
of inflammation and tissue injury, where these professional 
phagocytes can affect granule release and reactive oxidant 
production.  

Chemotaxis
All chemoattractant receptors have the ability to mediate cell 
migration.  In inflammatory disorders such as rheumatoid 
arthritis and atherosclerosis, the presence of leukocytes is cru-
cial to disease progression.  FPR1 is also responsible for sens-
ing mitochondrial N-formyl peptides released from damaged 
cells[19, 20].  Activation of the Gi family of G proteins is critical to 
chemotaxis, which involves a complex network of intracellular 
signaling and cytoskeleton reorganization.  Phagocytes polar-
ize upon chemoattractant stimulation, forming a leading edge 
and a trailing edge which is characteristic of a migrating cell.  
G protein signaling initiates at the leading edge, as evidenced 
by the production of PIP3 and translocation of proteins with 
the PIP3-binding PH domain such as Akt and guanine nucle-
otide exchange factors such as P-Rex1[21] (Figure 1).  Cytoskel-
etal reorganization also requires activation of the small 
GTPase Rac, whereas RhoA, another small GTPase, is believed 
to play a role at the trailing edge of a migrating cell[22].  Not 

all chemotaxis-mediating receptors are 7-TM receptors; other 
potent chemoattractants such as TGF-β act on other receptors.  
However, the fact that all chemokines bind to 7-TM recep-
tors illustrates the importance of this class of receptors in cell 
migration.  Until recently, only Gi proteins were implicated in 
leukocyte chemotaxis.  The fact that several chemoattractant 
receptors could also couple to Gq proteins prompted a study 
that identified its role in chemotaxis[23].  Using mice lacking Gq 
proteins, it was observed that chemotaxis of dendritic cells to 
selected chemokines requires both Gi and Gq proteins.  This 
alternative pathway uses a CD38-dependent mechanism for 
regulation of chemotaxis.  It is presently unclear why in these 
cells Gq is necessary for chemotaxis whereas in other cells Gi 
is sufficient, but studies of this sort make it clear that the study 
of chemotaxis will also expand the understanding of GPCR 
biology.

Degranulation
A large number of GPCR agonists, including chemotactic 
peptides, activated complement fragments and histamine, are 
able to stimulate granule release[24].  In neutrophils, binding 
of fMLF to the receptor FPR1 or C5a to C5aR, triggers strong 
degranulation. In fact, exogenous expression of FPR1 or C5aR 
in a rat basophilic leukemia cell line renders these cells capable 
of releasing β-hexosaminidase upon stimulation, demonstrates 
the sufficiency of these receptors to trigger degranulation[25].  
Simultaneous activation of several signaling pathways is 
required for degranulation[26].  As with other secretory cells, 
fusion of intracellular granules or vesicles in phagocytes 
requires calcium influx, which is triggered by GPCR signal-
ing (Figure 1).  G protein signaling also leads to the activation 
of several protein kinases, including PKC, cGMP-dependent 
kinase, and the serine/threonine kinase Akt.  Exactly how 
these kinases promote granule release remains incompletely 
understood, but it is reported that vesicular fusion-related 
proteins such as the SNAP proteins are phosphorylated upon 
cell stimulation and these phosphorylation events precede 
vesicular fusion[27].  In addition to the protein kinases, small 
GTPases are activated downstream of GPCRs and are required 
for fusion of intracellular vesicles.  

Superoxide generation
Although the production of reactive oxygen species (ROS) 
is widespread among different types of cells, phagocytes 
can produce large amounts of ROS, a requirement for kill-
ing phagocytosed bacteria[28].  A number of chemoattractants, 
including fMLF and C5a, potently stimulate ROS production 
in neutrophils, although production is extracellular rather 
than intra-phagosome when induced by these soluble media-
tors.  As a result, these oxygen radicals cause damage to 
endothelial cells that form the lining of vascular wall.  Expo-
sure to even low doses of these chemoattractants also “primes” 
the phagocytes for more robust oxidant production when 
stimulated with other inflammatory factors such as LPS[29].  
Chemoattractant-induced ROS production requires Gi protein, 
as it is effectively blocked by PTX treatment.  Research con-



344

www.nature.com/aps
Sun L et al

Acta Pharmacologica Sinica

npg

ducted thus far has found that chemoattractant-induced ROS 
production shares basic mechanisms with particle-induced 
ROS production, in that both require membrane translocation 
of cytosolic components and assembly of a functional NADPH 
oxidase at membrane.  There are, however, major differences 
in the upstream signaling mechanisms involved.  Whereas 
phagocytosis-induced oxidant production requires primar-
ily tyrosine kinase activation, chemoattractant-induced ROS 
production relies mostly on the activation of serine/threonine 
kinases such as Akt and dual-specificity protein kinases such 
as p38 MAPK.  These different signaling pathways then con-
verge at activation of downstream targets such as PKC (Figure 
1).  Published reports show that upon activation of chemoat-
tractant GPCRs, the released G protein βγ subunits triggers 
PI3K activation and the production of PIP3[30].  The membrane-
bound PIP3 is required for the subsequent activation of Akt 
and the small GTPase Rac, which is also required for the 
assembly of a functional NADPH oxidase complex[31, 32].  Thus, 
chemoattractant-induced ROS production requires simultane-
ous and sustained activation of multiple signaling pathways, 

which are also negatively regulated by phosphatases[33].  How 
chemoattractant GPCRs convert a single binding event to a 
cascade of signaling events remains incompletely understood.  
Recent studies have shown that both G protein-dependent and 
–independent pathways are involved in chemoattractant sig-
naling.  

GPCRs and inflammatory pain
Inflammation caused by trauma, infection and other forms of 
insult to the tissue is often accompanied by the uncomfort-
able sensation of pain.  Inflammatory pain may result from 
enhanced nociception due to the interaction of inflammatory 
mediators with neurons and the resulting state of hypersensi-
tivity.  Inflammation may also cause damage to neurons and 
produce neuropathic pain[34].  Being the largest group of sen-
sory receptors, GPCRs play important roles in inflammatory 
nociception.  At the periphery, a number of GPCR agonists 
produced during inflammation, including bradykinin (BK) 
and selected prostaglandins (PGs), participate in inflamma-
tory hyperalgesia.  BK and kallidin both activate and sensitize 

Figure 1.  Signaling pathways of GPCRs involved in inflammation.  Signaling by GPCRs is initiated by a specific ligand that binds and activates the 
receptor inducing conformational changes in the receptor.  A partial list of the relevant ligands is given in the top panel.  All 4 classes of G proteins 
are involved in the regulation of events that lead to inflammatory cell activation or inactivation.  Major effectors, including second messengers and 
other signaling molecules involved in the regulation of inflammation are shown.  These include Ca2+, cAMP, protein kinases, lipid kinases, lipases, 
phosphoinositides, small GTPases and the relevant guanine nucleotide exchange factors, and transcriptional factors.  The final output is manifested 
as nuclear, cytoplasmic and extracellular activities such as expression of proinflammatory genes, production of oxidants, and generation of tissue 
damaging and repairing factors.
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primary afferent neurons.  Two classes of BK receptors are 
present.  Experimental data show that B1 BK receptor agonists 
produce pain only during inflammation, in accordance with 
the inducible nature of the B1 BK receptor.  The B2 BK recep-
tor is constitutively expressed and its blockade reduces inflam-
matory hyperalgesia in animal models[35].

Prostaglandins (PGs) are lipid-derived autacoids generated 
through the sequential actions of cyclooxygenase and PG syn-
thase.  These metabolites of arachidonic acid include throm-
boxanes (TXA2), PGD2, PGE2, PGI2, and PGF2a.  Collectively, 
they interact with 9 prostanoid receptors that couple to a 
variety of G proteins and are responsible for several features 
of inflammation including pain and edema (Table 1).  Non-
steroidal anti-inflammatory drugs (NSAIDs), including acetyl-
salicylic acid (aspirin) and the more selective COX-2 specific 
inhibitors, are effective anti-inflammatory and pain-relieving 
agents primarily because they block the synthesis of PGs[36, 37].  
Among the various arachdonic acid metabolites, PGE2 inter-
acts with several GPCRs.  The 4 EP receptors are individual 
gene products but in the case of EP3, there are splice variants 
as well[38].  The 4 subclasses of EP receptors couple to various 
G proteins and are responsible for the variety of PGE2 effects.  
PGE2 is synthesized during the course of inflammation and 
contributes to tissue edema and hyperalgesia.  In the nocicep-
tive primary afferent nerve terminals, PGE2 modulates volt-
age-gated sodium currents[39], a function mediated through the 
EP3 receptor[40].  PGE2 is also synthesized in the CNS during 
peripheral inflammation and contributes to increased pain 
hypersensitivity[41].  

Prostacyclin (PGI), which acts on G protein-coupled IP 
receptor, is another arachdonic metabolite produced during 
inflammation that plays a central nociceptive role[42].  Mice 
lacking the IP receptor display altered pain perception as well 
as inflammatory responses[43].  Studies have shown that Gs-
coupled PG receptors may enhance nociceptor sensitization by 
reducing the activation threshold for selected sodium channels 
through a cAMP and PKA-dependent mechanism[44].  GPCRs 
present in dorsal horn neurons are also involved in transmis-
sion of nociception and are responsible for the development 
of central sensitization.  The NK1 receptor for tachykinin is a 
GPCR that responds to substance P and mediates PKC acti-
vation, leading to the phosphorylation and potentiation of 
N-methyl-D-aspartic acid (NMDA) receptors[45].  In addition to 
the NK1 receptor, the neuromedin U2 receptor (NMU2) plays 
a central role in nociception.  NMU2 knockout mice display 
reduced sensitivity to pain induced by capsaicin and forma-
lin[46].

Besides functions of GPCRs in inflammatory nociception, 
there are instances in which GPCRs are antinociceptive.  Lop-
eramide, an opioid agonist developed for peripheral use, dis-
plays antinociceptive activity in experimental arthritis[47].  Can-
nabinoids, which are agonists for the CB1 and CB2 receptors, 
inhibit peripheral sensitization when used topically[48].  Explo-
ration of the roles for GPCRs in inflammatory nociception is 
bound to provide novel therapeutics for effective control of 
pain associated with inflammatory diseases.  

GPCRs and regulation of vascular endothelial permeability
Edema, an abnormal accumulation of interstitial fluid, often 
accompanies inflammation.  The production of inflammatory 
factors, many of them GPCR agonists, is largely responsible 
for increased vascular endothelial permeability, which con-
tributes to edema during inflammation.  BK and PAF are 
well known for their roles in the regulation of vascular wall 
permeability.  It has long been recognized that BK reproduces 
cardinal signs of inflammation, and the BK effect on vascular 
permeability is direct rather than dependent on histamine[49].  
More recent studies have shown that both the B1 BK receptor 
and B2 BK receptor are involved in local edema during inflam-
mation, for instance, paw edema and protein extravasation 
leading to joint swelling[50].  PAF profoundly affects microvas-
cular permeability, allowing extravasation of plasma contents 
such as albumin[51, 52].  Like BK, PAF acts on endothelial cells 
directly, increasing gap formation between endothelial cells 
through the actions of eNOS[53], tyrosine phosphorylation of 
VE-cadherin[54], and the Rho family small GTPases[55].

Histamine and thrombin are also major regulators of vascu-
lar permeability.  Histamine is released by basophils and mast 
cells during the allergic response.  It binds to one or more of 
the four G protein-coupled histamine receptors, stimulating 
vasodilation and increasing vascular permeability[56].  Hista-
mine also participates in allergic inflammatory diseases such 
as asthma by inducing chemotaxis and bronchoconstriction[57].  
Thrombin is one of the best studied regulators of vascular 
endothelial permeability[58].  The thrombin receptor was 
initially identified as a GPCR with a unique mechanism for 
activation.  Upon binding of alpha thrombin, the receptor’s 
N-terminus was cleaved, generating a tethered peptide that 
becomes an agonist for the receptor[59].  This receptor is the first 
member of the protease-activated receptor (PAR) subfamily, of 
which 3 of the 4 PARs bind thrombin (Table 1).  Although ini-
tially known as a thrombotic agent that catalyzes the conver-
sion of fibrinogen to fibrin, thrombin is also a potent agonist 
for platelets and its receptors are expressed in human endothe-
lial cells as well as smooth muscle cells (SMC).  Its vascular 
functions include cellular differentiation, migration and pro-
liferation of SMC, angiogenesis and vascular development[60].  
PAR1, which is widely studied in this subfamily of GPCRs, 
couples to multiple G proteins including Gi, Gq, and G12/13.  
The selectivity for activation of these G proteins depends 
on the agonists that bind to the receptor[61].  In endothelial 
cells, thrombin binding to PAR1 leads to activation of p115 
RhoGEF, which provides a functional link between G13 and 
RhoA[62].  Activation of RhoA is responsible for stress fiber 
formation, and increased calcium flux triggers other signaling 
pathways which ultimately lead to myosin light chain-depen-
dent contraction of endothelial cells[63].  This process is revers-
ible, and focal adhesion kinase plays a role in the reversal of 
the increased vascular permeability[64].  Thrombin-induced 
increase in vascular endothelial permeability contributes to 
the edema seen in inflammatory disorders such as acute lung 
injury[65, 66].  Both the receptor and its downstream signaling 
pathways are targets for therapeutic intervention[67, 68].  In con-
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Table 1.  A partial list of GPCRs involved in inflammation.  

              Receptor type                                                                                                  Physiological functions

Chemokine
receptors
Ref [16, 17]   

Formyl peptide
receptors
Ref [10, 13]

Protease-
activated
receptors
Ref [59, 63,
65, 93, 94]

Lysophos-
pholipid 
receptors
Ref [69–71]

Prostaglandin
receptors
Ref [38–40,
42, 43, 95–
98]

Bradykinin
receptors
Ref [35, 99–
101] 

Tachykinin
receptors
Ref [45, 102]

Neuromedin U 
receptors
Ref [46, 103]

Cannabinoid
receptors
Ref [48, 104]

Platelet-
activating 
factor receptor 
Ref [51, 105]

CC family
  

CXC
family

Others	
CX3CR1
XCR1

FPR1
FPR2/ALX
FPR3

PAR1, PAR2,
PAR3, PAR4

S1P1

DP1, DP2

EP1, EP2,
EP3, EP4

FP, IP1, TP

B1BKR,
B2BKR

NK1

NMU2

CB1, CB2

PAFR

Specifically bind and respond to cytokines of CCL chemokine family; responsible for recruiment of T cells, macrophages 
and eosinophils; involved in atherogenesis and angiogenesis.  For instance, CCR2 is highly expressed in monocytes and 
responsible for their recruitment to atherosclerotic lesions; CCR2 also contributes to development of multiple sclerosis, 
rheumatoid arthritis, scleroderma and ischemia -reperfusion injury. 
Specifically bind and respond to CXCL chemokines; mainly present during acute inflammation and acute injury; 
responsible for chemoraxis and recruitment of neutrophils and eosinophils; some involvement in neovascularization, 
hematopoiesis and HIV-1 entry.  For instance, CXCR1 and CXCR2 are primary receptors for recruitment of neutrophils 
to the site of acute inflammation.  

Macrophage recruitment, atherogenesis and HIV-1 coreceptor. 
Chemotaxis, recruitment of mononuclear cells to rheumatoid arthritic joint. 

Detection of bacterial and mitochondrial formyl peptides; binding of other endogenous ligands such as serum amyloid 
A and annexin A1.  Mediates chemotaxis, degranulation and superoxide generation functions in neutrophils; induction 
of inflammatory cytokine expression.  FPR2/ALX is reported to mediate anti-inflammatory functions of lipoxin A4.  

PAR1, PAR3 and PAR4 are all considered thrombin receptors, whereas PAR2 is activated by trypsin and other ligands.  
PARs play roles in hemostasis and thrombosis, platelet signaling, and tissue injury.  These receptors are involved in the 
process of inflammation and tissue repair.  For instance, thrombin binding to PAR1 leads to activation of p115 RhoGEF, 
and RhoA.  Activation of RhoA is responsible for stress fiber formation, and increased calcium flux triggers other 
signaling pathways which ultimately lead to myosin light chain-dependent contraction of endothelial cells.  Thrombin-
induced increase in vascular endothelial permeability contributes to edema often seen in inflammatory disorders such 
as acute lung injury.  

Binds the lipid signaling molecule sphingosine 1-phosphate (S1P), and highly expressed in endothelial cells.  Deficiency 
of S1P1 leads to embryonic lethality, defective vascular maturation and decrease in Rac-mediated chemotaxis; S1P1 
also promotes stabilization of endothelial monolayer barrier function through its downstream signaling that leads to 
adherens junction assembly in endothelial cells. 

Inhibits platelet aggregation and histamine release; relaxation of the myometrium and smooth muscle; inhibition of 
leukotriene B4 and superoxide anion release from human neutrophils; regulation of eosinophil apoptosis; relaxation of 
pulmonary venous smooth muscle; relaxation of bronchial smooth muscle.  
PGE2 is synthesized during the course of inflammation and contributes to tissue edema and hyperalgesia.  All 4 
EPs response to PGE2 for various effects on different tissues, including algesia and regulation of blood pressure, 
contraction of pulmonary venous smooth muscle, regulation of the peripheral circadian clock, mediation of COX-2-
induced cytotoxicity, mediation of acid-induced visceral pain hypersensitivity, inhibition of phagocytosis and apoptotic 
cell death, promotion of cell growth and follicle growth, neuroprotection, inhibition of TNFα formation.  Example: PGE2 
binding to EP1 activates Gq pathway, leading to MAP kinase activation and production of pro-inflammatory cytokine 
such as IL-6 and TNFα.  In the nociceptive primary afferent nerve terminals, PGE2 modulates voltage-gated sodium 
currents, a function mediated through the EP3 receptor that couples to a Gi pathway.  Multiple splice variants of EP3 
are present.  
Mediate the responses to PGF2a, PGI2, and thromboxanes, respectively.  Example: TP play roles in platelet aggregation, 
contraction of pulmonary smooth muscle, vasoconstriction, mediation of cellular immune responses and inflammatory 
tissue injury.  Interaction of PGI2 with IP receptor plays a central nociceptive role in inflammation.  Mice lacking the IP 
receptor display altered pain perception as well as inflammatory response. 

B2BKR is constantly expressed whereas B1BKR expression is induced by inflammatory factors.  Both receptors 
modulate blood pressure and inflammatory pain.  Activation of B1BKR in the kindled rat hippocampus results in 
increase extracellular glutamate levels.  B1 blocking inhibits plasma extravasation in streptozotocin-induced diabetic 
rats.  Modulation of antigen-induced pulmonary inflammation in mice.  Blockade of B2BKR prevents tissue swelling 
and inflammation in animal models. 

Substance P receptor (SPR) is present in neurons, brainstem, vascular endothelial cells, muscle, and different types of 
immune cells.  SP induces neurogenic inflammation via NK1, not NK2 and NK3, for the transmission of stress signals 
and pain, the contraction of smooth muscles and inflammation. 

NMU2 binds neuropeptide hormones neuromedin U and neuromedin S.  The receptor mediates effects on cardio
vascular, gastrointestinal and CNS functions, and serves as a novel physiological regulator in spinal nociceptive 
transmission and processing.  NMU2-deficient mice display reduced sensitivity to pain induced by capsaicin and 
formalin. 

Both receptors are activated by endocannabinoids, plant cannabinoids, and synthetic cannabinoids.  CB2 is mainly 
expressed in the immune system and in hematopoietic cells.  Its activation causes a reduction in the intracellular levels 
of cyclic adenosine monophosphate (cAMP) and ultimately suppression of immune function. 

Activation of PAFR affects microvascular permeability, allowing extravasation of plasma contents such as albumin and 
vasodilation during inflammation.  PAF directly acts on endothelial cells, increasing gap formation between endothelial 
cells through the actions of eNOS, tyrosine phosphorylation of VE-cadherin and Rho family small GTPase.  PAFR plays 
roles in cell proliferation, motility and angiogenic response.  
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trast to thrombin, another GPCR ligand sphingosine 1-phos-
phate (S1P) promotes stabilization of the endothelial barrier[69].  
This effect of S1P is mediated through its receptor S1P1, which 
promotes adherens junction assembly in endothelial cells, thus 
fortifying vascular endothelial barrier[70, 71].  

GPCRs and regulation of inflammatory gene expression
A large number of GPCRs have been found to participate 
in transcriptional regulation[72].  G protein signaling leads 
to activation of transcription factors including CREB, c-Jun, 
NF-κB, and STAT3, among others (Figure 1).  These transcrip-
tion factors, particularly NF-κB, are closely associated with 
the expression of genes that encode inflammatory factors.  It 
was first reported that the receptor for PAF could stimulate 
NF-κB activation through a PTX-insensitive pathway, suggest-
ing that the Gq protein which couples to the PAF receptor is 
responsible for this function[73].  Subsequent studies identified 
both PTX-sensitive and PTX-insensitive mechanisms by which 
GPCRs activate NF-κB[74–78].  The Gi-dependent pathway 
requires the Gβγ subunits whereas Gq directly activates PLCβ, 
thus triggering PKC.  In addition to PKC, protein kinases that 
are found to be involved in GPCR activation of NF-κB include 
the Ser/Thr kinase Akt[77] and tyrosine kinase Pyk2[79].  The 
β-arrestin pathway was also involved in regulating NF-κB 
activation.  In resting cells, β-arrestins bind to IκBα and pro-
tect it from phosphorylation and proteosome degradation[80, 

81].  Upon GPCR activation, β-arrestins participate in intracel-
lular signaling leading to activation of multiple pathways that 
favor NF-κB activation[82–84].  Several intracellular signaling 
molecules that were initially identified for immune cell func-
tions, including CARMA3 and Bcl10, were found to regulate 
GPCR signaling leading to NF-κB activation[85, 86].  These lat-
ter findings provide evidence for the complexity of signaling 
pathways downstream of GPCRs.  

In addition to agonist-induced, GPCR-mediated NF-κB acti-
vation, a number of constitutively activated GPCRs are able 
to activate NF-κΒ even in the absence of agonists.  Viruses 
such as KSHV, HHV8, and RCMV encode GPCRs that are 
constitutivelyactive and, when expressed in mammalian cells, 
activate NF-κB[87–90].  Like agonist-induced GPCRs, these viral 
GPCRs couples to more than one G proteins for signaling[88].  
Transcriptional activation by these GPCRs is not restricted to 
NF-κB[87].  These receptors are believed to contribute to their 
pathological functions including stimulation of angiogenesis 
in the case of KSHV GPCR, and are potential therapeutic tar-
gets[91, 92].  

Summary
The diverse actions of inflammatory factors are reflected 
in the diversity of receptors with which they interact.  It is 
therefore not surprising that inflammatory factors of different 
nature and composition, including arachidonic acid metabo-
lites, peptides, protein fragments and proteases, are found to 
partner with the 7-TM GPCRs.  The diversity in ligand bind-
ing and transmembrane signaling by GPCRs are primarily 
responsible for the mediation of complex inflammatory (and 

anti-inflammatory) responses.  There is no doubt that GPCRs 
play important roles in inflammation, as they do in other vital 
organ functions.  A better understanding of these receptors 
as well as their signaling pathways will help to develop new 
therapeutic agents with higher specificity than traditional anti-
inflammatory agents such as NSAIDs.  
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G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple 
physiological functions as well as in tumor growth and metastasis.  For instance, various molecules like hormones, lipids, peptides and 
neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-pro-
teins, which are highly specialized transducers able to modulate diverse signaling pathways.  Furthermore, numerous responses medi-
ated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction 
cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the 
various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary 
action in cancer progression.  These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and 
contribute to the identification of novel pharmacological approaches for cancer patients.
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Introduction
The seven-transmembrane G protein-coupled receptors 
(GPCRs), which belong to the largest superfamily of signal 
transduction proteins, regulate multiple biological functions 
coupling to a heterotrimeric G-protein associated with the 
inner surface of the plasma membrane[1].  The heterotrimer 
that is composed of the Gα, Gβ, and Gγ subunits, binds to the 
guanine nucleotide GDP in its basal state.  Upon activation by 
ligand binding, GDP is released and replaced by GTP, which 
leads to subunit dissociation into a βγ dimer and the GTP-
bound α monomer[2] (Figure 1).  On the basis of the sequence 
identity, the Gα subunit has been classified into four families: 
Gαs, Gαi, Gαq, and Gα12.  Each Gα family can relay the GPCR 
signal stimulating different downstream effectors[2].  Some 
GPCRs, such as the lysophosphatidic acid (LPA) receptors, 
can couple to more than one G protein triggering consequen-
tly diverse signaling cascades, whereas other GPCRs like 
sphingosine-1-phosphate (S1P) receptor 1 (S1P1) couple exclu-
sively to one G protein[3, 4].  

An increasing number of studies links aberrant GPCR 
expression and activation to numerous types of human mali-
gnancies[5, 6] (Figure 1).  For instance, several GPCRs are ove-
rexpressed in different tumors[6] and GPCR variants can lead 
to increased cancer risk.  In this regard, it should be mentio-

* To whom correspondence should be addressed. 
E-mail marcellomaggiolini@yahoo.it  
Received 2011-10-13    Accepted 2011-12-01  

ned that in genetic association studies melanocortin-1 receptor 
(MC1R) polymorphisms were associated with an enhanced 
threat of skin cancer[7].  In addition, an aberrant activation of 
GPCRs by high levels of ligands like LPA, S1P and chemoki-
nes was involved in cell transformation, proliferation, angio-
genesis, metastasis and drug resistance[6].  Conversely, some 
members of GPCRs, such as the orexin receptor OX1R, were 
shown to mediate a pro-apoptotic action in various cancer 
cells[8].

Cross-talk among different receptors including GPCRs trig-
gers relevant biological functions in normal and neoplastic 
cells[9].  In this context, it has been reported that many GPCRs 
activate numerous signaling pathways interacting with 
other plasma membrane receptors[9] (Figure 1).  For example, 
the cross-talk between acetylcholine muscarinic receptors 
(mAChRs) and epidermal growth factor (EGFR) as well as 
platelet-derived growth factor (PDGFR) receptors leads to the 
activation of mitogenic pathways which mediate cell prolifera-
tion, differentiation and survival[10].  In addition, several GPCR 
ligands like bradikinin (BK), LPA, Gastrin-releasing peptide 
(GrP) and bombesin (BN) transactivate EGFR, then inducing 
stimulatory effects in different types of tumors[6].  

Currently,  many agents targeting GPCRs, such as 
gonadotropin-releasing factor and somatostatin receptors, are 
used for cancer treatment on the basis of valuable experimen-
tal data and clinical benefits[11, 12].  Moreover, various inhibi-
tors of GPCRs are currently under evaluation in clinical trials 
as anticancer agents (http://www.clinicaltrials.gov/).  This 
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review recapitulates our current understanding regarding the 
mechanisms through which various GPCRs may contribute to 
tumor progression.  On these bases, GPCRs may be considered 
as promising targets in novel pharmacological approaches for 
cancer patients.  

GPCRs activated by bio-active lipids 
GPCRs activated by the bio-active lipids LPA and S1P have 
been implicated in aberrant signaling in a wide range of 
tumors.  LPA1, LPA2 and LPA3 represent the most widely 
expressed and well-characterized receptors for LPA and its 
analogues[3].  Upon binding to these receptors, LPA triggers a 
variety of signaling pathways engaging the heterotrimeric G 
proteins and their downstream effectors[3].  As a consequence, 
the transcriptional activation of multiple cancer-associated 
genes leads to cell survival and proliferation, migration, che-
motaxis, vascular remodeling and angiogenesis[13].  Aberrant 
expressions and mutations of LPA receptors have been found 
in several types of tumors, suggesting their involvement in the 
growth advantage of cancer cells[3, 14, 15] .  For instance, LPA1 
was inversely correlated in breast cancer tissues with the 
Nm23 metastases regulator[16] and contributed to bone meta-
stasis in breast cancer xenografts[17].  Furthermore, LPA indu-
ced migration in breast cancer cells by activating LPA1, which 
promoted the phosphorylation of nonmuscle myosin II (NM 
II) light chain through the activation of ROCK and RhoA acti-
vity[18].  In addition, the expression of LPA1, LPA2, and LPA3 
in mammary epithelium of transgenic mice induced a high 
frequency of late-onset, estrogen receptor (ER)-positive, inva-
sive and metastatic mammary cancer[19].  LPA stimulated also 
tumorigenesis and metastasis in ovarian malignancy[20].  For 
instance, LPA exerted a growth factor-similar action and pre-
vented apoptosis in ovarian cancer cells through redox-depen-
dent activation of ERK, Akt and NF-κB-dependent signaling[21].  

Recently, the LPA/LPA1-induced Rac activation as well as 
the integrity of SOS1/EPS8/ABI1 tri-complex were required 
for ovarian cancer metastasis[22].  Closely resembling the LPA-
effects in human ovarian cancer cells, LPA induced metastasis 
of epithelial ovarian cancer in immuno-competent mice[23].  
As other GPCR ligands, LPA promoted stimulatory effects in 
different types of tumors by transactivating EGFR and trig-
gering a functional cross-talk between its cognate receptors 
and EGFR-mediated signaling[6].  In this regard, it should be 
mentioned that EGFR activity was required for the activation 
of Gi-dependent cellular responses induced by LPA in ovarian 
cancer cells[24].  Moreover, a cross-talk between LPA receptors 
and EGFR occurred in ovarian cancer cells as demonstrated by 
the increase of LPA production following ligand-dependent 
EGFR transactivation[25].  In addition to breast and ovarian 
malignancies, LPA was involved in other types of tumors.  In 
a murine xenograft model of lung adenocarcinoma, mesen-
chymal stem cells were recently shown to stimulate angioge-
nesis through a LPA1-dependent mechanism[26].  Likewise, an 
engineered three-dimensional tumor xenograft model of non-
small cell lung cancer (NSCLC) in nude mice regressed and 
lost vascularity in response to BrP-LPA, which acts as a LPA 
receptor antagonist and autotaxin inhibitor[27].

The bio-active lipid S1P has been involved in various aspects 
of tumor development, including cell proliferation, motility 
and invasiveness, apoptosis, differentiation, angiogenesis and 
inflammation[28].  However, S1P can mediate both prolifera-
tive[29] and antiproliferative[30] effects in neoplastic cells.  These 
opposite responses to S1P were attributed to the different 
activities exerted by its five receptors, which are coupled to 
distinct members of the G protein family and display a specific 
tissue expression pattern[28].  In particular, S1P1 mediated pro-
migratory effects[31], whereas S1P2 inhibited cell migration[32].  
An increased S1P1 expression, which was recently induced by 

Figure 1.  Agonist binding to GPCRs promotes the dissociation 
of GDP bound to the Gα subunit and its replacement with GTP 
leading to the activation of the heterotrimeric G proteins and 
the subunit dissociation into a βγ dimer and the GTP-bound 
α monomer.  Both subunits activate multiple downstream 
effectors which induce gene transcription and relevant biological 
responses.  A cross-talk between several GPCRs and other 
membrane receptors as Epidermal Growth Factor Receptor 
(EGFR) contributes to the growth stimulation and invasion of 
cancer cells.  
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the activator of transcription-3 (STAT3), up-regulated IL-6 and 
accelerated tumor growth and metastasis[33].  In glioblastoma 
and in Wilms tumor cells S1P-dependent S1P1 signaling indu-
ced cell migration and invasion[34, 35], whereas in glioblastoma 
and melanoma cells S1P-dependent S1P2 pathway negatively 
directed migration and invasion[32, 36].  Paralleling the afo-
rementioned observations, S1P1 and S1P2 exerted opposite 
effects on tumor angiogenesis.  For instance, S1P1 stimulated 
angiogenesis[37] and accordingly the administration of mono-
clonal anti-S1P antibody prevented tumor growth by inhibi-
ting angiogenesis and motility, survival and proliferation[38].  
In addition, S1P1 was shown to be up-regulated in vessels at 
sites of tumor implantation, whereas S1P1 silencing resulted in 
the inhibition of tumor growth[39].  In contrast to the Gi-depen-
dent S1P1 stimulation of tumor angiogenesis, S1P2 mediated 
inhibitory effects on tumor angiogenesis through G12/Rho 
signaling[40].  Together, these data suggest that the different 
action elicited by S1P1 and S1P2 may serve for novel pharma-
cological strategies based on therapeutics able to inhibit S1P1 
and to activate S1P2 simultaneously.

GPCRs activated by peptides
The endothelin receptors (ETAR and ETBR) have been broadly 
involved in the regulation of mitogenesis, cell survival, angio-
genesis, lymphangiogenesis, invasion and metastatic dissemi-
nation as well as epithelial-to-mesenchymal transition (EMT) 
in diverse types of malignancies[41].  Accordingly, high plasma 
endothelin-1 (ET-1) levels correlated with the tumor stage in 
cancer patients, suggesting that ET-1 can also serve as a prog-
nostic marker[41, 42].  Emerging data demonstrate that interfer-
ing with the ET receptors-dependent pathways may provide 
a significant chance for the development of novel anticancer 
strategies, in particular using ETAR antagonists in combination 
with EGFR inhibitors as well as cytotoxic drugs[43].  Neverthe-
less, antagonists of ET receptors, like atrasentan and ziboten-
tan (ZD4054), used alone have also gained considerable inter-
est in human clinical trials on the basis of their potential anti-
cancer activity[43].  For instance, the ETAR blockade with the 
specific ETAR antagonist zibotentan restored drug sensitivity 
to cytotoxic-induced apoptosis and inhibited ovarian cancer 
cell invasion[44].  

The four receptors for the Gastrin-releasing peptide 
(GrP) were shown to be able to transactivate EGFR in lung, 
head and neck squamous tumor cells[45, 46].  In addition, 
ligand-stimulation of GrP receptors contributed to the growth 
of several malignancies through the activation of diverse 
phospholipases and protein kinases[47].  As GrP receptors were 
found overexpressed in a wide variety of tumors, their inhi-
bition has been suggested as a promising objective in some 
malignancies[47].  Hence, the use of antagonists of GrP receptors 
represents a potential approach to inhibit the GrP-dependent 
effects on tumor growth.  In this regard, it was demonstrated 
that the anti-tumor activity of GrP antagonists involves dif-
ferent mechanisms as the reduction of EGFR and Her2 levels, 
the alteration of MAPK, PKC, pAkt, and COX-2 signaling, 
the attenuation of c-fos and c-jun expression, the modulation 

of wild-type and mutated forms of p53 along with an altera-
tion of Bcl-2/BAX ratio, the inhibition of vascular endothelial 
growth factor (VEGF)[47].  Radiolabeled GrP analogues rep-
resent another chance in targeting GrP receptors, thus they 
are currently considered promising radiopharmaceuticals for 
detection and treatment of different types of tumors[48, 49].

Protease-activated receptors (PARs) are a unique class of 
GPCRs that are activated by proteolytic cleavage of their extra-
cellular domains[50].  PAR-1 exerted a functional role in the 
growth, migration and metastasis in various tumors[51-53].  For 
instance, its proteolytic activation by thrombin caused persis-
tent activation of EGFR/ERK signaling, promoting thereafter 
breast carcinoma cell invasion[54].  Moreover, PAR-1 negatively 
regulated the expression of the Maspin tumor-suppressor 
gene contributing to the metastatic phenotype of melanoma[55].  
It has been recently reported that metalloprotease-1 (MMP1) 
may function as a protease agonist of PAR-1 which then 
stimulates migration, invasion and angiogenesis in breast and 
ovarian malignancies[56, 57].  

Activation of the canonical Wnt pathway occurs through 
the seven-transmembrane Frizzled (Fzd) family receptors and 
the co-receptors lipoprotein receptor-related protein (LRP) 
in order to initiate the β-catenin signaling cascade[58].  The 
activated β-catenin translocates from the cytoplasm to the 
nucleus inducing the transcription of Wnt-responsive genes[58].  
Numerous studies have shown that the dysregulation of the 
canonical Wnt pathway may lead to cancer development and 
progression[58].  In this regard, mutations of β-catenin, axin 
and other components of the Wnt pathway[59] as well as the 
activation of tissue-specific Wnt target genes[60, 61] were found 
in a variety of human tumors.  In addition, the non-canonical 
Wnt pathways that act independently of β-catenin promote 
the invasiveness and progression of tumors[62].  Several Fzd 
receptors are highly expressed in a variety of malignancies 
and involved in cancer cell growth, survival and invasion 
through both canonical and non-canonical Wnt pathways[6].  
For instance, the pharmacological inhibition of Fzd7, which is 
frequently overexpressed in hepatocellular carcinoma (HCC), 
displayed anti-tumor properties by involving β-catenin and 
PKCδ signals[63].  Fzd7 was also crucial through the canonical 
Wnt pathway for cell proliferation and invasiveness in triple 
negative breast cancer cells as well as for tumor formation in 
xenograft models[64].  Moreover, the increased expression of 
Fzd4 through the up-regulation of β-catenin dependent Wnt 
signaling promoted in invasive glioma cells the acquisition of 
glioma stem cell-like properties and resistance to apoptosis[65].  
Next, a cross-talk between Wnt pathways and EGFR signaling 
occurred in multiple stages of cancer development[59].

The Hedgehog (Hh) signaling, which plays a key role in 
embryonic development, has been involved in the develop-
ment of multiple malignancies[66].  Hh ligands are secreted 
from different tissues at various stages of development and 
generate intracellular signaling by binding to and inactivating 
the Hh receptor Patched-1 (Ptch1), which relieves its catalytic 
inhibition of the GPCR-like signal transducer Smoothened 
(Smo).  The activation of Smo triggers downstream events 



354

www.nature.com/aps
Lappano R et al

Acta Pharmacologica Sinica

npg

that culminate in the stimulation of the glioma-associated 
oncogene homologue (GLI) transcription factors, the up-reg-
ulation of target genes like cyclins, Bcl-2 and SNAIL and the 
production of VEGF and angiopoietins[66].  Consequently, Hh 
signaling contributes to cancer cell proliferation and survival, 
angiogenesis and metastasis[66].  In addition, mutations in 
components of the Hh pathway, such as Smo and Ptch1, lead 
to a constitutively activated Hh signaling in the absence of 
ligands in diverse cancer types, including basal cell carcinoma, 
medulloblastoma and non-small cell lung carcinoma[66–68].  The 
overexpression of Hh ligands have been also identified in sev-
eral tumors as a stimulating factor acting in an autocrine man-
ner to induce cell proliferation and survival[69].  Likewise, Hh 
ligands produced by stromal cells can promote tumor growth 
and survival in a paracrine manner[69].  Conversely, tumor cells 
can produce Hh ligands which activate transduction pathways 
in stromal cells[69].  Several small molecule antagonists for Smo 
have been developed with a promising preclinical efficacy in 
multiple tumors.  For instance, the Smo inhibitor CUR61414 
inhibited in mice skin the Hh signaling, blocked the induc-
tion of hair follicle anagen and shrank in basal cell carcinomas 
(BCCs), although in a phase I clinical study it did not show 
any activity in human superficial or nodular BCCs[70].  Sev-
eral other Smo antagonists, such as IPI-926, BMS-833923 and 
GDC-0449, are currently under evaluation in clinical trials as 
anticancer agents (http://www.clinicaltrials.gov/).  In par-
ticular, GDC-0449 produced promising antitumor responses 
in a phase I study in patients with advanced BCCs as well as 
in a 26-year-old man with metastatic medulloblastoma which 
was unmanageable by conventional therapies[71].  However, 
the response of this patient to GDC-0449 treatment was only 
transient due to a mutation of Smo[71].  Recently, a number of 
Hh pathway antagonists targeting Smo mutants[72] as well as 
inhibitors able to block both wild-type and Smo mutants have 
been identified[73].  In addition to Smo antagonists, other inhib-
itors were used to block Hh signaling like the small molecule 
inhibitor of GLI1 and GLI2 transcription factors, GANT61, 
which induced colon carcinoma cell death in a higher extent 
respect to the conventional Smo inhibitor cyclopamin[74].  The 
treatment with GANT61 reduced also the expression of the 
target gene Patched and decreased the viability of chronic 
lymphocytic leukemia cells[75].  Recently, the systemic antifun-
gal itraconazole which failed to bind to Smo at the same bind-
ing site of cyclopamine, showed a potent antagonism for the 
Hh signaling pathway associated with anti-tumor activity in a 
mouse medulloblastoma allograft model[76].

GPCRs activated by chemokines
Besides their functions in the immune system as mediators 
of leukocyte migration, chemokines and the cognate recep-
tors play a critical role in tumor initiation and progression, 
including angiogenesis, attraction of leukocytes and induction 
of cell migration and homing in metastatic sites[77].  The first 
described angiogenic chemokine, CXCL8/IL-8, which binds 
to CXCR1 and CXCR2[78], is secreted by a variety of normal 
and tumor cells exposed to pro-inflammatory cytokines like 

IL-1 and TNF-α[79].  CXCR2 was associated to multiple signal-
ing pathways involved in tumorigenesis, angiogenesis, pro-
liferation and metastasis in several malignancies, including 
melanoma[80], lung[81], pancreatic[79, 82], gastric[83], and ovarian[57] 
tumors.  For instance, the overexpression of CXCR2 induced 
an aggressive phenotype of melanoma cells consisting with 
an enhanced proliferation, migration and tumor growth in 
mice[84].  

The homeostatic chemokine stromal cell-derived factor-1, 
CXCL12/SDF-1, which regulates cardiac and neuronal devel-
opment, stem cell motility and neovascularization, was also 
involved in diverse tumorigenic processes[77].  The CXCL12/
SDF-1 interaction with the widely expressed tumor cell sur-
face receptor CXCR4 initiates divergent signaling pathways 
which can result in a variety of responses like chemotaxis, cell 
survival, proliferation and metastasis[80].  CXCR4 is capable 
of orchestrating a complex signaling network, including the 
up-regulation of E-cadherin and c-myc as well as the modula-
tion of molecules facilitating mammary epithelia cell transfor-
mation[85].  Enhanced CXCR4 signaling was also involved in 
the resistance to endocrine therapy in breast cancer[86] and in 
the drug resistance of colon[87] and pancreatic cancer cells[88].  
Of note, CXCR4 expression and phosphorylation has been 
considered a negative prognostic marker in various types of 
cancer including acute myelogenous leukemia and B-acute 
lymphoblastic leukemia, breast and colon carcinomas, as 
it correlated with worse prognosis and decreased survival 
of patients[86, 89–92].  Increased levels of VEGF, the activation 
of nuclear factor kappa B (NF-ĸB) and some oncoproteins 
up-regulate CXCR4 expression, in particular during cancer 
progression[93, 94] and under hypoxic conditions[95].  CXCR4/
SDF-1 contributes to tumor progression also through the 
activation of tumor-associated integrin and the production 
of matrix metalloproteases[93], as observed in human basal 
carcinoma cells[96] and oral squamous cell carcinomas[97].  
Recently, CXCR7/RDC1 has been identified as a novel recep-
tor for CXCL12/SDF-1 and CXCL11[98], although its coupling 
to G-proteins remains controversial.  CXCR7 is expressed in 
diverse cell types including malignant cells[98] as well as in 
tumor-associated blood vessels[99].  CXCR7-dependent signals 
promote the growth of breast and lung tumors, enhance lung 
metastasis and tumor aggressiveness in prostate cancer[99, 100].  
Antagonists of CXCR7 prevented tumor growth in animal 
models, hence validating this receptor as a potential target for 
the development of novel anti-cancer therapeutics[98].

GPCRs activated by hormones
Numerous hormone-activated GPCRs are overexpressed in 
hormone-dependent and independent tumors and trigger 
multiple transduction pathways, which mediate relevant bio-
logical effects in diverse cancer cells.  For instance, angiotensin 
II (Ang-II) and bradykinin (BK) receptors are overexpressed 
in prostate cancer[101, 102] and mediate cell growth through Gαq 
and/or Gα13 which activate RhoA-dependent signaling[103].  In 
this regard, it was shown that Rho is involved in the andro-
gen-like activity of androgen receptor (AR) antagonists[104] and 
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able to sensitize AR to low androgens levels[105].  On the basis 
of these studies, it can be assumed that GPCRs may contribute 
to androgen-dependent and independent growth of prostate 
cancer[103].  Recently, Ang-II exhibited in vitro and in vivo the 
potential to enhance the expression of AR in prostate cancer 
cells through angiotensin II type-1 receptor (AT1R)[106].  In 
addition, Ang-II and BK receptors have been implicated in 
the development, growth, angiogenesis and metastasis in a 
wide number of tumors[101, 102, 107–111].  For instance, Ang-II and 
BK stimulated DNA synthesis in pancreatic cancer cells[112].  In 
the context of this malignancy, a cross-talk between insulin/
insulin like growth factor-I (IGF-1) receptors and Ang-II and 
BK-activated GPCRs has been reported[111-114].  In particular, 
insulin induced the potentiation of Ang-II and BK-dependent 
signaling through the PI3K/Akt/mTOR transduction path-
way[113].  Metformin, which is one of the most used drug in the 
treatment of type 2 diabetes, disrupted in pancreatic cancer 
cells the cross-talk between insulin receptor and GPCR sig-
naling through the activation AMP kinase, which negatively 
regulated mTOR function[113].  Further supporting these obser-
vations, metformin prevented the growth of pancreatic cancer 
cells in xenograft models[114, 115].  Cumulatively, these findings 
suggest that the cross-talk between insulin/IGF-1 receptors 
and GPCR-activated signaling can be considered as a mecha-
nism involved in the development of certain tumors and a 
promising target for novel anti-cancer strategies.

As it concerns the renin-angiotensin system, an abundant 
generation of Ang-II stimulated by the angiotensin-converting 
enzyme (ACE) and the up-regulation of AT1R have been 
demonstrated in various tumors[110, 116].  In this respect, ACE 
inhibitors and angiotensin II receptor blockers (ARBs) have 
recently acquired an increasing interest as chemopreventive 
agents[110, 117, 118].  Of note, ARBs have been associated with 
reduced cancer occurrence in patients with essential hyper-
tension and a longer exposure to ARBs has been related with 
major benefits in cancer patients[119].  Nevertheless, ARBs did 
not show the ability to reduce considerably cancer develop-
ment in a meta-analysis of randomized controlled trials[120].

Among the GPCR family members, the gonadotropin-
releasing hormone (GnRH) receptor is a well established 
target in the clinical practice of cancer treatment[121].  Several 
antagonist analogues of GnRH have been clinically tested and 
numerous orally active antagonists are under development[121].  
The GnRH receptor is one of the smallest GPCRs as it lacks the 
characteristic intracellular carboxyl-terminal domain with a 
very short extracellular amino-terminus.  GnRH receptors are 
expressed not only in the pituitary and in normal peripheral 
tissues[122], but also in various tumor cells like melanoma, pros-
tate and endometrial carcinomas, leiomyomas, leiomyosarco-
mas, breast cancer, choriocarcinoma, epithelial and stromal 
tumors of the ovary[122, 123].  The activation of the peripheral 
GnRH receptor, which is coupled to the Gi protein in uter-
ine leiomyosarcoma, ovarian and endometrial carcinomas, 
decreased intracellular cAMP levels leading to a down-regula-
tion of gene transcription and antiproliferative effects in tumor 

cells[122].  Indeed, the repressive action of GnRH-I receptor on 
cell proliferation has been demonstrated in hormone-related 
tumors like prostate, breast, ovary and endometrium can-
cer[124].  GnRH and the cognate receptors were also involved 
in the stimulation of motility and invasion in ovarian cancer 
cells[125, 126], however several studies suggested a protective role 
elicited by GnRH analogues against gonadal damage during 
chemotherapy in diverse types of tumors[122].  On the basis of 
these findings, GnRH analogues are used in many endocrine-
dependent malignancies such as breast, endometrial, epithelial 
and stromal ovarian cancer.  The antitumor activity of GnRH 
analogues was presumed to result from desensitization and/
or decrease of GnRH receptors in the pituitary, with the conse-
quent decline in gonadotropin secretion and gonadal hormone 
production.  Nevertheless, GnRH analogues were shown to 
suppress directly the growth of endometrial, ovarian, breast 
and prostate tumors and uterine leiomyoma[122, 127, 128].  Like-
wise, the growth of prostate cancer cells in vitro and in tumor 
xenografts was inhibited by activating the GnRH receptor 
or by GnRH receptor blockade[129].  In line with these obser-
vations, phase III trial data have demonstrated that GnRH 
agonists are effective and well tolerated in the treatment of 
hormone-sensitive prostate cancer[130].  Recently, the possibility 
of using GnRH analogues to carry cytotoxic agents directly to 
cancer cells expressing GnRH receptors has been evaluated[131].  
For instance, AN-152 conjugate which is made from doxorubi-
cin being linked to [D-Lys6]GnRH agonist, reduced the prolif-
eration of breast, ovarian and endometrial cancer cells in vitro 
and in xenografted nude mice[132, 133].

Estrogens influence many physiological processes, but are 
also implicated in the development or progression of various 
types of cancer[134].  The multiple biological actions elicited by 
these hormones have traditionally been attributed to the clas-
sical nuclear estrogen receptor (ER)α and ERβ, which act as 
ligand-activated transcription factors[134].  Surprisingly, a mem-
ber of the GPCR family, GPR30/GPER, was recently shown to 
mediate the multifaceted actions of estrogens in different tis-
sues including cancer cells[135].  Importantly, GPER overexpres-
sion was associated with lower survival rates in endometrial 
and ovarian cancer patients and with an elevated risk of devel-
oping metastases in patients with breast cancer[136-138].  GPER 
by transactivating EGFR triggers numerous transduction path-
ways including the intracellular cAMP, calcium mobilization, 
MAPK, PI3-K and phospholipase C activation in a variety of 
cell types[139].  Moreover, it has been shown that the activation 
of the Gαs protein by GPER is responsible for the estrogen, 
phyto- and xenoestrogens stimulation of adenylate cyclase and 
the ensuing increase in cAMP in breast cancer cells[140, 141].  The 
signaling events upon GPER activation by both estrogens and 
notably ER antagonists can lead to gene transcription as well 
as to the growth and migration in diverse hormone-sensitive 
tumors like breast, endometrial and ovarian cancer[142–149].  
Notably, GPER was also involved in the stimulatory effects 
elicited by estrogens and ER antagonists in cancer-associated 
fibroblasts[147, 150].
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GPCRs activated by neurotransmitters
Emerging findings support the hypothesis that the develop-
ment, progression and responsiveness to treatments in most 
tumors is strongly influenced by an imbalance in stimulatory 
and inhibitory neurotransmission[151].  The neurotransmit-
ters adrenaline and noradrenaline act as powerful regulators 
of numerous cellular and tissue functions and can promote 
tumor growth and metastases through the β-adrenergic recep-
tors (β-AR), which are Gs-protein coupled receptors[152–154].  
For instance, noradrenaline stimulates tumor progression in 
diverse types of malignancies activating β-AR which in turn 
induces the production of VEGF, interleukin-6 (IL-6) and 
matrix metalloproteinases[153, 155].  

As for β-adrenergic compounds[156], the action of musca-
rinic acetylcholine receptors (mAchRs) on the proliferation 
of cancer cells is still questioned[157].  In fact, these receptors 
interact with distinct G protein subunits triggering various 
cellular functions through specific downstream effectors.  As 
it concerns M2 and M4 receptors, they interact with Gi pro-
teins inhibiting adenylyl cyclase-dependent signaling.  On the 
contrary, M1, M3 and M5 receptors coupled with Gq proteins 
activate phospholipase C, PKC and induce an increase of 
intracellular calcium[153].  These mAchR subtypes can protect 
cells from the apoptosis subsequent to DNA damage, oxi-
dative stress and mitochondrial dysfunction[158].  Although 
muscarinic receptor expression was identified in cells derived 
from brain, breast, colon, lung, ovary, pancreas, prostate, skin, 
stomach and uterus malignancies[157], only for some of these 
receptors a functional role has been demonstrated.  In ovar-
ian cancer the expression of muscarinic receptors was associ-
ated with reduced survival[159], while in leukemia cells their 
activation resulted in increased intracellular calcium and up-
regulation of the oncogene c-fos[160].  Activation of M3 receptor 
by cholinergic agonists stimulated proliferation of primary 
astrocytoma cells in a ERK and NF-κB dependent manner[157].  
In breast cancer cells, M1 and M2 receptors were involved in 
angiogenesis and cell proliferation, whereas M3 receptor was 
associated only with cell growth[161].  Agonist binding to M3 
receptor resulted in the activation of EGFR/MAPK transduc-
tion pathway, which then stimulated the proliferation in colon 
cancer cells[162].  

Somatostatin receptors (SSTRs), particularly SSTR subtype 
2, were found highly expressed in many neoplastic cells and in 
tumoral blood vessels[163].  SST analogues decreased tumor cell 
growth and angiogenesis as well as stimulated apoptosis in 
cancer cells[164].  These findings contributed to develop various 
cytotoxic SST conjugates that displayed relevant anti-tumor 
abilities targeting selectively SSTR2-specific sites[165].

β-arrestins: novel transducers of GPCR signals
The sensitivity of GPCRs is regulated by G protein-coupled 
receptor kinases (GRKs) and β-arrestins families, that are 
known to exert a central role in GPCR endocytosis, intra-
cellular trafficking, desensitization and resensitization[166, 167].  
As it concerns β-arrestins, they can also function as molecular 
mediators of G protein-independent signaling by activating 

a variety of transduction proteins like Src family kinases and 
components of the MAPK cascades[166, 168, 169].  On the basis of 
these findings, β-arrestins were included among the signal-
ing factors mediating the action of diverse GPCRs in can-
cer[170].  For instance, β-arrestin/Ral signaling was involved in 
the migration and invasion of breast cancer cells induced by 
LPA[170].  In addition, prostaglandin E2 induced the association 
of prostaglandin E receptor 4 with β-arrestin 1 and c-Src, that 
formed a signaling complex able to induce the migration and 
metastasis of colorectal carcinoma cells[171].  In accordance with 
these data, β-arrestin 1 interacting with Src and ETAR triggered 
EGFR transactivation and β-catenin phosphorylation, which 
stimulated invasion and metastasis in ovarian cancer cells[172].  
Moreover, β-arrestin 1 forming a trimeric complex with ETAR 
and axin contributed to the inactivation of glycogen synthase 
kinase (GSK)-3 and stabilization of β-catenin[172].  Collectively, 
these results indicate that β-arrestins exert an important role 
in GPCR-mediated signaling as well as a pivotal role in cancer 
invasion and metastasis.  Novel pharmacological approaches 
targeting the β-arrestins pathway would provide further ther-
apeutical opportunities in diverse types of tumors.

Orphan GPCRs and cancer
Relevant efforts were recently made in the deorphanization 
of the over 130 GPCRs for which ligands have not yet been 
identified.  Some of these GPCRs have been linked to cancer 
development and progression on the basis of their overex-
pression and/or up-regulation by diverse factors[173–175].  For 
instance, an elevated expression of the orphan G-protein-
coupled receptor GPR49 was involved in the formation and 
proliferation of basal cell carcinoma[176], while GPR18 was 
found associated with melanoma metastases[177].  In lung, 
cervix, skin, urinary bladder, testis, head and neck squamous 
cell carcinomas were detected high levels of GPR87[178, 179] for 
which UDP-glucose, cysteinyl-leukotrienes and LPA exhibited 
binding properties[180].  In breast and colon cancer cells, DNA 
damage has been recently found to regulate GPR87 expression 
in a p53-dependent manner[173].  Taken together, these results 
suggest that GPR87 may elicit survival and anti-apoptotic 
actions, while its overexpression plays a pivotal role in the 
development and progression of diverse types of tumors.  On 
the contrary, GPR56 inhibited prostate cancer progression and 
suppressed tumor growth and metastasis in melanoma xeno-
grafs[181].  Moreover, GPR56 inhibited VEGF production from 
melanoma cells and prevented melanoma angiogenesis and 
growth[182].  Accordingly, the expression of GPR56 has been 
found inversely correlated with melanoma malignancies, sug-
gesting its potential role in cancer development and metasta-
sis[175, 182].

Targeting deorphanized GPCRs also in combination with 
well-known anti-cancer agents would be expected to increase 
the effectiveness of the current therapeutical approaches.  In 
this regard, extensive studies are required to completely deci-
pher the biology of these receptors in order to provide the 
basis for the design and use of new drugs in different types of 
human tumors.
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Concluding remarks
Despite GPCRs form the largest superfamily of cell surface 
receptors involved in signal transmission, in clinical practice 
only few anticancer compounds are currently used in order to 
interfere with GPCR-mediated signaling.  Although the role 
played by GPCRs and their ligands in tumor pathophysiol-
ogy is intricate, an increasing body of evidence has recently 
emerged linking indubitably these molecules to the develop-
ment and progression of cancer.  Consequently, GPCRs and 
their downstream-activated effectors represent a rich source of 
potential drug targets for innovative strategies in tumor pre-
vention and treatment.  Next, the identification of the trans-
duction network maps connecting several GPCR-dependent 
signals with other transduction pathways will facilitate further 
investigations regarding the biological potential of these recep-
tors, opening in the mean time a new valuable scenario for the 
discovery of novel anti-cancer therapeutics.  Finally, the ongo-
ing efforts to fully characterize the numerous orphan GPCRs 
will certainly lead in the near future to the identification of 
new targets toward innovative pharmacological strategies in 
cancer patients.
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The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in  
diverse physiological and pathological functions.  GPCRs are the most successful targets of modern medicine, and approximately 36% 
of marketed pharmaceuticals target human GPCRs.  However, the endogenous ligands of more than 140 GPCRs remain unidentified, 
leaving the natural functions of those GPCRs in doubt.  These are the so-called orphan GPCRs, a great source of drug targets.  This 
review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and 
their potential functions in immunology, development, and cancers.  In this review, we present the current approaches and difficulties 
of orphan GPCR deorphanization and characterization.
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Introduction
GPCRs represent the largest superfamily and most diverse 
group of mammalian transmembrane proteins.  The main 
characteristic feature of these proteins is that they share a 
common seven-transmembrane (7TM) configuration.  GPCRs 
have attracted a great deal of interest owing to their numerous 
physiological and pathological roles in transducing extracel-
lular signals into intracellular effector pathways through the 
activation of heterotrimeric G protein by binding to a broad 
range of ligands, including proteins[1], peptides[2], organic com-
pounds[3, 4], and eicosanoids[5].  This makes GPCRs and their 
signal transduction pathways important specific targets for a 
variety of physiological functions and therapeutic approaches, 
ranging from the control of blood pressure, allergic response, 
kidney function, hormonal disorders, and neurological dis-
eases to the progression of cancer[6].  Owing to the features of 
GPCR structure and function, approximately 36% of currently 
marketed drugs target human GPCRs[7].  GPCRs have huge 
potential in biomedical research and drug development.  

Human GPCRs can be divided into five main families on the 
basis of phylogenetic criteria, Glutamate, Rhodopsin, Adhesion, 
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Frizzled/Taste2, and Secretin[8].  Among the five GPCRs families, 
Rhodopsin is the most studied.  It comprises the largest group 
of GPCRs.  Notably, in recent years, the leucine-rich repeat-
containing G-protein coupled receptor (LGR) subfamily, part 
of Rhodopsin, have displayed enormously important physi-
ological functions in knockout mice studies especially LGR4 
and LGR5.  Olfactory receptors are also members of Rhodopsin 
family of GPCRs and are mainly expressed in sensory neu-
rons of olfactory system.  These form a multigene family.  The 
PSGR subfamily belongs to the olfactory receptor group.  The 
family has restricted expression in human prostate tissues and 
is upregulated in prostate cancer.  The second largest GPCR 
family, with 33 members, is the Adhesion family.  This fam-
ily is very special because of its members’ secondary struc-
tures, with distinctive long N-termini containing adhesion 
domains[8].  Limited studies have shown that Adhesion GPCRs 
are involved in the signaling of cell adhesion, motility, embry-
onic development, and the immune system.  There are still 
GPCRs for which the natural ligands remain to be identified.  
These are called orphan GPCRs.  

LGRs and PSGR belong to Rhodopsin subfamily and they 
represent as classical GPCRs in structure and signal transduc-
tion.  On the other hand, Adhesion GPCRs are novel, and their 
structures and signal transduction are distinct to the classical 
GPCRs.  In this review, we focused our discussion on LGR 
subfamily, PSGR subfamily, and adhesion GPCRs family.  We 
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also discussed current screening systems for the deorphaniza-
tion and characterization of the orphan GPCRs.

Orphan GPCRs 
The first GPCR to be identified was rhodopsin in 1878.  It 
was later proven that rhodopsin consists of the GPCR protein 
opsin and a reversibly covalently bound cofactor, retinal[9, 10].  
After completion of the human genome sequence in 2004[11, 12], 
the number of human GPCRs increased to about 800 based on 
the screening approaches, such as low-stringency hybridiza-
tion[13], PCR-derived methods[14], and bioinformatic analyses[15].  
Besides the olfactory receptor family, more than 140 GPCRs 
have not yet been linked to endogenous ligands.  These are the 
so-called orphan GPCRs (Figure 1)[16].  

Biological functions of the LGR subfamily 
LGRs 4–8 are members of the rhodopsin GPCR family, which 
can be divided into two groups, LGRs 4, 5, and 6 and LGRs 
7 and 8 in terms of their natural ligand.  R-spondins have 

recently been identified as the ligands for LGRs 4, 5, and 6[17].  
LGRs 7 and 8 are relaxin family peptide (RXFP) receptors[18].  
According to sequence similarity, LGRs 4, 5, and 6 are closely 
related to each other, showing almost 50% identities.  The 
three orphan receptors have a substantially large N-terminal 
extracellular domain (ECD) composed of 17 leucine rich 
repeats (LRR) (Figure 2)[19].  Lgr4, also known as Gpr48, has 
been reported to have many physiological functions by the 
generation of knockout mice.  The loss of Lgr4 results in devel-
opmental defects in many areas, including intrauterine growth 
retardation associated with embryonic and perinatal lethal-
ity[20], abnormal renal development[21], defective postnatal 
development of the male reproductive tract[22], ocular anterior 
segment dysgenesis[23], bone formation and remodeling dys-
function[6], impaired hair placode formation[24], and defective 
development of the gall bladder and cystic ducts[25].  Lgr5 
has been proven to be a marker of gastrointestinal tract and 
hair follicle stem cells[26, 27].  Knockout of Lgr5 in mice leads 
to total neonatal lethality accompanied with ankyloglossia 
and gastrointestinal distension[28].  Lgr6 also has been shown 
to be a stem cell marker in hair follicles, and Lgr6-positive 
stem cells have been found to produce all cell lineages of the 
skin[29].  LGR4 and LGR5 are also highly expressed in several 
types of cancers.  LGR5 is up-regulated in human colon and 
ovarian tumors and promotes cell proliferation and tumor 
formation in basal cell carcinoma[30, 31].  Overexpression of 
LGR4 enhances cervical and colon cancer cell invasiveness 
and metastasis[32].  However, despite their critical function in 
development and cancer, LGR4 and LGR5 will still be con-
sidered orphan receptors until R-spondins reported to func-
tion as their natural ligands can be proven to regulate Wnt/
β-catenin signaling pathway.  Some observations of Lgr4 and 
Lgr5 knockout mice have been strongly relevant to Wnt/
β-catenin signaling[33, 34].  This suggests that LGR4 and LGR5 
could be involved in the Wnt pathway.  One author stated that 

Figure 1.  Percentage of the orphan GPCRs in GPCR superfamily.  GPCRs 
constitute a large transmembrane family of more than 800 members.  
Among them, 6% are utilized as drug target in clinical applications, and 
30% are natural ligand receptors.  However, 49% are olfactory receptors 
(most of them are orphan GPCRs), and 15% are orphan GPCRs.  (Data 
were summarized from a review paper[122])

Figure 2.  LGR subfamily GPCRs.  The Type A LGRs includes the follicle-stimulating hormone receptor (FSHR), the luteinizing hormone receptor (LHR) 
and the thyroid-stimulating hormone receptor (TSHR).  The Type B LGR comprises three members, Gpr48/LGR4, LGR5, and LGR6 which remain orphan 
GPCRs at the present time.  By contrast, Type C LGRs have only two members, LGR7 and LGR8 which have been demonstrated to be the relaxin family 
receptors.  Type A contains 9 LRRs in the ectodomain, whereas Type B contains 17 LRRs.  By contrast, Type C has an N-terminal LDL receptor-like 
cysteine-rich domain not found in other LGRs.  7TM, seven-transmembrane; LDL, low-density lipoprotein; LRR, leucine-rich repeat; LGR, leucine-rich 
repeat-containing G-protein-coupled receptor; FSHR, follicle-stimulating hormone receptor; LHR, luteinizing hormone receptor; TSHR, thyroid-stimulating 
hormone receptor.
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R-spondins-Lgr4 induced the signal transduction pathway in 
a manner independent of G proteins[17].  However, two inde-
pendent groups have reported that Lgr4/Gpr48 is associated 
with the Gαs-cAMP pathway by generating constitutively 
active forms of Lgr4/Gpr48[23, 35].  Therefore, the existence of 
endogenous ligands for the activation of classical G-protein 
coupled signaling pathways for Lgr4/Gpr48 is still a ques-
tion.  LGR7 and LGR8 share 54% identity.  Besides 10 LRRs 
motif, LGR7 and LGR8 also have an LDL class A (LDLa) motif 
in the N-terminal, which is an important domain for signal 
transduction (Figure 2).  Traditionally, relaxin/LGR7 has been 
thought to be a hormone receptor for pregnancy and parturi-
tion[18].  Recently, it has been reported that relaxin/LGR7 also 
has significant function in non-reproductive organs, such as 
the heart, and even plays a role in cancer growth and metas-
tasis[36].  Insulin-like peptide 3 (INSL3), which is a ligand of 
LGR8, is highly expressed in the Leydig cells of the testis and 
knocking out Insl3 in mice generates a cryptorchid phenotype.  
However, reports have been conflicting with respect to LGR8 
mutations related to human cryptorchidism[18].  The role of 
INSL3 in human adult male is still not clear.

PSGRs subfamily in prostate cancer
Mammalian olfactory receptors, which are the members of the 
Rhodopsin family of GPCRs and mainly expressed in sensory 
neurons of the olfactory epithelium in the nose, are used to 
sense the chemical environment[37].  Recently, some olfactory 
receptors have also been found in other organs.  For example, 
MOR23 is expressed both in the olfactory epithelium and 
in sperm and functions as a chemosensing receptor during 
sperm-egg communication, thereby modulating fertilization 
in the reproductive system[38].  The new olfactory receptor 
family members PSGR1 and PSGR2 have been found to have 
restricted expression in human prostate tissues, as shown by 
Northern blot and real-time PCR analysis of over 20 different 
human tissue types[39–41].  PSGR subfamily expression increases 
significantly in the epithelial cells of prostate intraepithelial 
neoplasia (PIN) patients and in prostate cancer patients rela-
tive to non-cancerous controls and benign prostatic hyperpla-
sia tissues, suggesting that the PSGR subfamily may play an 
important role in early prostate cancer development[42].  The 
PSGR subfamily has been proven to be strongly associated 
with the clinical parameters (clinical stages, Gleason scores, 
recurrence status, and metastasis) and its members could 
serve as biomarkers for prostate cancer[42, 43].  PSGR subfamily 
transcripts even can be used as diagnostic markers in urine[44].  
It has also been reported that PSGR expression detection 
together with the well-known prostate cancer marker prostate-
specific antigen (PSA), prostate cancer gene 3 (PCA3), and 
α-methylacyl-CoA racemase (AMACR) can increases diagnos-
tic specificity in the detection of prostate cancer[43–45].  Recently, 
Neuhaus EM et al reported that through intracellular Ca2+ flux 
using a bank of steroid hormones and through odorant-related 
compound screening, certain steroids and β-ionone have been 
proven to be active ligands for PSGR[46].  PSGR-induced Ca2+ 

signaling was found to require the involvement of endog-

enous Ca2+-selective transient receptor potential vanilloid type 
6 (TRPV6) channels[47].  Incubation of prostate cancer cells with 
β-ionone inhibits cell proliferation[46].  This suggests that PSGR 
signaling is also involved in prostate cancer cell progression.  

Adhesion GPCR family 
GPCRs in the Adhesion family have a relative long N-terminal 
domain, which contains many so-called adhesion domains 
(Figure 3).  These adhesion domains only existed in some 
adhesion molecules, such as integrins, cadherins, and selec-
tins; and the domains are thought to have adhesive proper-
ties.  Another striking characteristic of all the Adhesion GPCRs 
is that there is a GPS (GPCR proteolytic site) domain linking 
the 7TM region to the extracellular domain, which acts as an 
autocatalytic site[48, 49].  As a novel GPCRs family, most of the 
members are orphan and only a few of them have been identi-
fied as having natural ligands and functions.

Adhesion GPCRs in immunology
Immune response is coordinated by an assortment of mem-
brane receptors, including TLRs, integrins, lectins, the Ig 
superfamily, selectins, and GPCRs, which are found on leuko-
cytes[10, 50, 51].  The first Adhesion GPCR to be discovered, epider-
mal growth factor-like module containing mucin-like recep-
tor protein 1 (EMR1, F4/80 receptor), which is an epidermal 
growth factor (EGF)-seven transmembrane (7M) receptor, have 
a predominantly leukocyte-restricted expression pattern[52].  
Though the expression of Emr1 is restricted, the function of 
this receptor remained unknown until the generation of Emr1 
knock-out mice.  The mouse model indicates that Emr1 is criti-
cal to the induction of CD8+ regulatory T-cells in peripheral 
tolerance[53].  Besides EMR1, the EGF-TM7 subfamily includes 
EMR2, EMR3, EMR4, and CD97, all of which belong to the 
Adhesion GPCR family.  Unlike the highly specific expression 
of EMR1, the other EGF-TM7 receptors are expressed largely 
in myeloid cells (monocytes, macrophages, neutrophils, and 
dendritic cells) and in some lymphoid cells (T and B cells)[54].  
Chondroitin sulfate has recently been identified as the ligand 
for EMR2 and CD97, which mediate cell attachment[55].  CD97, 
the leukocyte activation antigen, also has been shown to bind 
to the  complement regulatory protein DAF/CD55 (decay 
accelerating factor) and the longest splice variant of CD97 
has the highest capacity to bind to CD55-expressing cells.  
Although CD97 and EMR2 differ by only 3 amino acids (in the 
EGF domain), the activity of EMR2 binding to CD55 is signifi-
cantly weaker[56, 57].  The precise function of the CD97-CD55 
interaction is still not fully understood.  Using knock-out mice 
and x-ray crystallography, Abbott RJ et al demonstrated that T 
cells and complement regulatory activities of CD55 occur on 
opposite faces of the molecule, suggesting that the CD97-CD55 
complex might simultaneously regulate both the innate and 
adaptive immune responses[58, 59].  EMR3 has been reported as 
a marker for mature granulocytes, and it can interact with the 
ligand that expresses at the surface of monocyte-derived mac-
rophages and activated human neutrophils[60, 61].  EMR4 has 
been reported to interact with a cell surface protein as a ligand 
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on A20 B-lymphoma cells[62].  

Adhesion GPCRs in development
The most extensively studied Adhesion GPCRs in embryonic 
development are the so-called 7TM-cadherin subfamily (Celsr/
Flamingo/Starry night).  All the members of this subfamily 
posses extracellular domains containing nine atypical cad-
herin repeats which have linked the combination of EGF-like 
and laminin G-like domains[63].  The 7TM-cadherins are an 
evolutionarily conserved gene subfamily with homologues 
discovered from ascidians to mammals[63].  In mammals, the 
subfamily comprises 3 genes, Celsr1, Celsr2, and Celsr3.  There 
are 4 genes (fmila, fmilb, fmi2, and fmi3) in zebrafish and only 
one homologue, called flamingo and starry night, in Drosophila.  
Drosophila studies provide us with a distinct function view of 
Flamingo/Starry night as a core planar polarity protein[64].  Its 
functions include regulating dendrite extension from sensory 
neurons[65, 66], modulating target selection by photorecep-
tor axons[67], accelerating axon advance from sensory and 
motor neurons[68], and limiting ectopic neuromuscular junc-
tion formation and maintenance of motor axon terminals[69].  
Gene knockout and knockdown of 7TM-cadherins has also 
confirmed this observation in vertebrates.  7TM-cadherins 

regulate morphogenetic movements, neural tube closure, ori-
entation of sensory hair cells in inner ear, and hair follicle pat-
terning[63, 70–73].  Recently, Adhesion GPCRs Gpr124 and Gpr126, 
which are not 7TM-cadherins, have been shown to regulate 
the development of different tissues in mice.  Gpr124 affects 
CNS-specific angiogenesis and Gpr126 affects Schwann cells 
to initiate myelination[74–77].  This suggests that more members 
of this family may be involved in development and that this 
may be due to the adhesive or other properties of N-terminal 
domains.  

Adhesion GPCRs in cancers
Because cell adhesion molecules have a vital role in cancer 
progression, it is reasonable to speculate that Adhesion GPCRs 
also play important functions in cancer progression and 
metastasis.  Leukocyte Adhesion GPCR EMR2 has been proven 
to be overexpressed in human breast cancer and is associ-
ated with patient survival[78].  CD97 is involved in tumor-
environment interactions and mediates tumor invasion[79].  It 
has been reported that the 7TM-cadherin receptors may also 
be involved in human cancers, such as gastric cancer, lung 
cancer, and melanoma[80].  Interestingly, unlike other Adhesion 
GPCRs, GPR56 has been shown to suppress some cancer cell 

Figure 3.  Schematic diagram of the extracellular 
N-terminal domain within the Adhesion GPCRs.  The 
extracellular N-terminal domains of 33 Adhesion 
GPCRs was predicted by the RPS-BLAST against the 
conserved domain database (CCD).  CA, cadherin 
domain; calx-beta, domain found in Na+–Ca2+ 
exchangers; CUB, resembles the structure of 
immunoglobins; EAR, epilepsy-associated repeat; 
EGF-Lam, laminin EGF-like domain; EGF, epidermal 
growth factor domain; HBD, hormone-binding 
domain; herpes-gp2, resembles the equine herpes 
virus glycoprotein gp2 structure; GBL, galactose-
binding lectin domain; Ig, immunoglobulin domain; 
OLF, olfactomedin domain; LamG, laminin G domain; 
LRR, leucine-rich repeat domain; PTX, pentraxin 
domain; Puf, displays structural similarity to RNA-
binding protein from the Puf family; SEA, domain 
found in sea-urchin sperm protein; SIN, resembles 
the primary structure of the SIN component of the 
histone deacetylase complex; TSP1, thrombospondin 
domain. C-type lectin, similar to the C-type lectin 
or carbohydrate-recognition domain; GPS, GPCR 
proteolytic site domain.
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growth and metastasis through interacting with tissue trans-
glutaminase (TG2)[81, 82].  

Signal transduction mediated by Adhesion GPCRs
Most Adhesion GPCRs are orphan receptors, which is the main 
reason whether or not Adhesion GPCRs are involved in G pro-
tein signaling.  In addition, the complicated structure of Adhe-
sion GPCRs, comprising both largely ECD and 7TM domains, 
make it possible for Adhesion GPCRs to go through the signal-
ing pathway in a G-protein-independent manner[83].  For exam-
ple, Gpr124 regulates angiogenic sprouting into neural  tissues 
through TGF-beta pathway in mouse[76].  BAI1 can function as 
an engulfment receptor in response to “eat me” signal phos-
phatidylserine, which leads to BAI1 directly bind and activate 
the ELMO/DOCK180/RAC module[84].  It has been reported 
that GPR124 and GPR125 can interact with several viral onco-
proteins by its cytoplasmic PDZ domain.  And the rat Ig-Hepta 
(GPR116) has been shown to form a homodimer that is linked 
by disulphide bonds.  Moreover, this receptor undergoes two 
proteolytic cleavages, and cleaved product in the SEA domain 
might act as a ligand to bind to GPR116[85–87].  Therefore, these 
7TM receptors may mediate G-protein independent signaling 
pathway in cellular functions.

Though some Adhesion GPCRs go through G-protein- 
independent pathways, others have been proven to go 
through the classic G-protein-dependent pathway.  Lectome-
din receptor-1 was co-purified with the Gαo

[88].  Also, GPR56 
has been shown to form a complex with Gq/11 and G12/13 in the 
neural progenitor cells[89, 90].  Gpr126 modulates Schwann cells, 
initiating myelination by classic cAMP pathway[74].  Latrophi-
lin, which is activated by the ligand LTX, can transduce the 
intercellular Ca2+ signal pathway.  These observations indicate 
that this family can transmit signals through both classical 
G-protein-dependent and G-protein-independent mecha-
nisms.  

Deorphanization strategy
GPCRs are the most prominent family of pharmacological 
targets in biomedicine[91].  The deorphanization of orphan 
GPCRs is one of the most important missions in orphan GPCR 
research.  Deorphanization is the process of identifying ligands 
that are highly selective for orphan GPCRs.  In general, the 
standard assays are radio-ligand binding, calcium flux, GTPγ 
binding, and modulation of cAMP levels[92–98].

With the development of molecular technology, several lines 
of approaches have been used for deorphanization.  The first, 
according to the sequence and function similarity, ligands of 
the identified receptors are used to examine GPCRs with iden-
tical sequences or domains.  This sequence similarity strategy 
resulted in the identification of the ligands of Edg3 and Edg5, 
whose sequences are similar to that of the S1P receptors, 
with >50% amino acid identity[99–101].  The function similar-
ity strategy lead to the identification of the ligands of Lgr5 
homologues, R-spondins, which stimulate the growth of intes-
tinal stem cells[17].  However, this approach must be carefully 
evaluated because its predictions are not always accurate.  For 

example, alkyl imidazole functions as dual histamine H3/H4 
receptor ligands, while histamine H3/H4 receptors share very 
little sequence identity[102, 103].  Although the EGF domain of 
CD97 and EMR2 share 97% identity, only CD97 shows high 
affinity with CD55 but not with EMR2.  The second strategy 
used to identify natural ligands works by determining the 
expression profile relationship between receptor and the puta-
tive ligand.  This technique led to the identification of the 
receptors of RDC7 and RDC8 as adenosine A1 and A2A recep-
tors, all of which are highly transcribed in the brain cortex, 
thyroid follicular cells, and testis[104, 105].  The third technique is 
used to identify GPCRs that have specific expression profiles 
and distinct cytoplasm signal pathways.  This method uses 
extracts of tissues that contain potential ligands to screen by 
the GPCRs mediated signaling assays.  Some hormone pro-
teins, such as nociptin, orexins, apelin, prolactin, and ghrelin, 
were successfully identified using this strategy[106–109].  The 
fourth strategy has been used successfully to deorphanize 
Adhesion GPCRs.  It involves engineering recombinant soluble 
extracellular regions of Adhesion GPCRs with an Fc-fragment 
in N-terminal and biotinylation signal at the C-terminal.  This 
acts as probe to screen the extracellular matrix components.  
This led to the identification of certain ligands for myeloid 
cell Adhesion GPCR[51, 110].  In recent years, the so-called reverse 
pharmacology strategy has also been used to identify the 
ligands of orphan GPCRs[98].  This is carried out by expressing 
these orphan GPCRs in eukaryotic cells by DNA transfection 
and then coupling them to ligands to examine the binding 
affinity of the cells and ligands[111, 112].  With this approach, 
many peptide hormones, including ghrelin, which stimu-
lates hunger; kisspeptin and metastin, which are involved 
in puberty development and cancer metastasis; orexin and 
hypocretin, which mediate food intake and induce wakeful-
ness and energy expenditure, have been discovered within the 
last decade[113].  However, the successful application of reverse 
pharmacology method depends on three major elements: suf-
ficient orphan receptor expression, high-quality ligands and 
robust screening assays to detect receptor activation[114, 115].  
Fortunately, with development of membrane protein expres-
sion and purification techniques, neuropeptides and synthetic 
ligands have been applied to large-scale screening[116].  Of the 
three elements outlined above, choosing an appropriate detec-
tion assay is the most problematic.  

The rate of GPCR deorphanization decreased drastically at 
the turn of the century, suggesting some gap the processes 
exit.  Herein, we discuss several factors that may account for 
the problem.  The greatest challenge in deorphanization of 
the receptors is the limited knowledge about them, especially 
with respect to their physiological functions and their roles as 
transmitters of signal pathways.  Thus, experimental design 
is rendered difficult by the lack of signal transduction assays 
and positive controls[113].  Second, the majority of approaches 
to deorphanization rely on monitoring changes at the second 
messenger level, which is regulated by G proteins.  However, 
GPCRs can transduce signal pathways diversely, sometimes 
even beyond G proteins.  In this case, identifying the relevant 
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signaling pathway is key point to deorphanization.  For exam-
ple, some orphan GPCRs require accessory proteins for their 
activity.  This working model has been shown in calcitonin 
GPCRs, which require RAMPs (receptor activity-modifying 
proteins) for their activation.  To identify the ligand of this 
kind of GPCR, new screening assays for specific accessory 
proteins must be set up[117, 118].  Third, there is a possibility that 
some transmitters are only expressed at a particular time dur-
ing the life span or at certain specific conditions[9].  Although it 
is risky and challenging, it is necessary to find more effective 
transmitters for deorphanization and put them to use.  Lastly, 
some orphan GPCRs can form heterodimers with other GPCRs 
and function in a ligand-independent manner, and there is 
no outcome for the identification of the ligands of this kind of 
orphan GPCRs.  For example, GABABR1 and GABABR2 form 
well-known heterodimer receptors and GABABR1 is involved 
in ligand-binding, whereas GABABR2 only acts as the signal-
ing unit.  GABABR2 is an orphan receptor in the heterodimer 
complex without any known ligand[119-121].  

Perspectives in the research of orphan GPCRs
In recent years, the numbers of new orphan GPCRs have 
increased and several members have been relatively well char-
acterized.  However, the progress of orphan GPCR function 
research has been hampered by the lack of identified ligands 
and by the unique structures of the GPCR themselves.  Further 
investigation of their signaling pathways is valuable to under-
stand the physiological and pathological roles of these new 
orphan GPCRs.  The development of orphan GPCR knockout 
mice has also been shown to be a successful method for the 
characterization of their physiological and pathological func-
tions.  The knockout approach for orphan GPCRs are essential 
for our understanding of these receptor functions and their 
potential pathways.  Functional and specific antibodies can 
serve probes not only for the ligands, but also for developing 
therapies for tumors and genetic disorders in which orphan 
GPCRs are involved.  Although progress is very difficult, 
searching for the ligands of orphan GPCRs and identifying 
their physiological functions will continue.  With recent dis-
coveries of more and more orphan GPCR signaling pathways, 
understanding of their particular physiological functions and 
deorphanization for therapeutic purposes should accelerate in 
the coming years.
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G-protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most success-
ful therapeutic targets for a broad spectrum of diseases.  The design and implementation of high-throughput GPCR assays that allow 
the cost-effective screening of large compound libraries to identify novel drug candidates are critical in early drug discovery.  Early 
functional GPCR assays depend primarily on the measurement of G-protein-mediated 2nd messenger generation.  Taking advantage of 
the continuously deepening understanding of GPCR signal transduction, many G-protein-independent pathways are utilized to detect 
the activity of GPCRs, and may provide additional information on functional selectivity of candidate compounds.  With the combination 
of automated imaging systems and label-free detection systems, such assays are now suitable for high-throughput screening (HTS).  In 
this review, we summarize the most widely used GPCR assays and recent advances in HTS technologies for GPCR drug discovery.
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Introduction
G-protein-coupled receptors (GPCRs), also known as 7 trans-
membrane receptors, are the largest family of cell surface 
receptors and account for approximately 4% of the protein-
coding human genome[1].  They are activated by a wide variety 
of stimulants, including light, odorant molecules, peptide and 
non-peptide neurotransmitters, hormones, growth factors and 
lipids, and control a wide variety of physiological processes 
including sensory transduction, cell–cell communication, neu-
ronal transmission, and hormonal signaling.  

After agonist binding, activated receptors catalyze the 
exchange of guanidine diphosphate (GDP) for guanidine 
triphosphate (GTP) on the α-subunit of heterotrimeric G 
proteins (composed of α-, β-, and γ-subunits), which in turn 
engages conformational changes that lead to the dissociation 
of Gα from the dimeric Gβγ subunits[2].  GPCRs coupled to 
Gαs and Gαi/o proteins activate or inhibit, respectively, adeny-
late cyclase, the enzyme responsible for converting adenosine 
triphosphate (ATP) to 3’,5’-cyclic adenosine monophosphate 
(cAMP).  cAMP serves as a second messenger that activates 
protein kinase A (PKA) and other downstream effectors (pre-
viously reviewed[3]).  GPCRs coupled to Gαq/o alternatively 

activate phospholipase Cβ (PLCβ), which catalyzes the forma-
tion of diacylglycerol (DAG) and inositol-1,4,5-trisphosphate 
(IP3).  IP3 then binds and opens the endoplasmic IP3-gated 
calcium channel, causing the release of calcium into the cyto-
plasm.  GPCRs coupling to Gα12/13 further activate the guanine 
nucleotide exchange factor RhoGEF, which in turn activates 
the small G protein RhoA.  

In the presence of continuous agonist stimulation, GPCRs 
are phosphorylated by specific GPCR kinases (GRKs), and 
the recruitment of β-arrestins to the phosphorylated GPCRs 
eventually terminates G protein signaling and leads to a coor-
dinated process of receptor desensitization, inactivation and 
internalization[3].  The β-arrestins also facilitate the forma-
tion of multi-molecular complexes and provide a means for 
G protein-independent signaling of GPCRs, including those 
involving mitogen-activated protein (MAP) kinases, recep-
tor and non-receptor tyrosine kinases, phosphatidylinositol 
3-kinases (PI3K) and others[4].

Given their importance in health and disease, together with 
their potential for therapeutic intervention via using small 
molecules as regulators, GPCRs represent the largest family of 
druggable targets.  These receptors are the target of >50% of 
the current therapeutic agents on the market, including more 
than a quarter of the 100 top-selling drugs, with profits in the 
range of several billion US dollars each year[5].  Therefore, 
GPCR assay development and GPCR ligand screening remain 
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the major focus of drug discovery research worldwide.  His-
torically, radioligand binding assays with receptor-containing 
membranes were used to identify compounds that target 
GPCRs.  However, binding affinity data do not tell us whether 
the compound is an agonist or an antagonist, or more impor-
tantly, the overall potency of a compound under physiological 
conditions.  Efforts have been made in the past few decades 
to develop signaling-dependent cell-based functional assays 
to provide more accurate and comprehensive data of the com-
pounds targeting GPCRs.  

An ideal assay for GPCR ligand screening should be simple, 
nonradioactive, robust, homogenous, and easily adapted to 
a microtiter plate format (96-, 384-, or 1536-well) for robotic 
automation.  Since GPCR signaling consists of a series of spa-
tial and temporal events, another important consideration is 
whether to measure a proximal or distal signaling step after 
GPCR stimulation.  Measurement of events proximal to recep-
tor activation will reduce the incidence of false positives[6]; 
however, moving down the signal transduction cascade will 
enhance the signal-to-noise ratio due to signal amplifica-
tion.  Many GPCRs also activate multiple signaling pathways.  
Biased signaling, a phenomenon in which certain agonists 
display better efficacies in activating one pathway over oth-
ers, is another critical issue to consider in functional screen 
development[4, 7].  If a functional assay capturing only one 
signaling pathway is selected for screening compound librar-
ies, potentially valuable compounds could be missed if the 
compound does display biased activity.  Therefore, multiplex-
ing of signaling pathways or assays representing an overall 
cellular response may be used to resolve such problems.  In 
this review, we summarize the most widely used GPCR assays 
and recent advances in high-throughput screening (HTS) tech-
nology for GPCR drug discovery (Table 1).

Receptor binding assay
Receptor binding assay can be used to characterize in great 
detail the interaction between receptor and its ligands, such as 
the intrinsic affinity of ligands to the receptor, association/dis-
sociation rates, and the density of receptor in tissues or cells[8].  
Receptor binding assay is a cell-free method theoretically suit-
able for any GPCR screening without involving downstream 
signaling from the receptor.  This type of assay can also obtain 
agonists and antagonists in one experiment, but without dis-
tinguishing whether the candidate compound is an agonist, 
antagonist, or inverse agonist.  However, the availability of 
labeled ligands greatly limits the application of this assay.  It is 
practically useless for GPCR deorphanization.  

The first radioligand binding assay was performed in 1970 
by Lefkowitz et al using a radiolabeled hormone to deter-
mine the binding affinity for its receptor[9].  Since then, 3H- 
or 125I-labeled ligands have been widely used to characterize 
the affinity of a compound for a target GPCR, while non-
labeled compounds can be characterized by their ability to 
displace the binding of a radiolabeled molecule to the target 
(orthosteric agonists/antagonists) or to modulate the affinity 
of a radiolabeled molecule for the target (some allosteric mod-

ulators)[10].  The traditional radioligand binding assays require 
washing and filtration steps, which can only be scaled down 
to a 96-well format.  

A homogenous scintillation proximity assay (SPA), which 
can be easily scaled down and automated for HTS applica-
tions, was developed more recently (reviewed in[11]).  In SPA, 
only the radiolabeled molecules binding to the GPCR immobi-
lized on the surface of SPA beads can activate the scintillation 
beads, which produce photons detectable with a scintillation 
counter.  SPA thus allows binding reactions to be tested with-
out washing or filtration steps.  Although radioligand binding 
gives a clear, unmistakable signal, radioligands are relatively 
expensive, problematic to dispose of, and some isotopes have 
inconveniently short half-lives.  These drawbacks have led to 
the creation of highly sensitive nonradioactive alternatives.

Many new binding assays are based on time-resolved fluo-
rescence resonance energy transfer (TR-FRET) technology, 
such as DELFIATM TRF from PerkinElmer, the LanthaScreenTM 
system from Invitrogen, and the Tag-liteTM system from Cisbio.  
Tag-liteTM is a newly developed homogeneous time-resolved 
fluorescence (HTRF) technology[12] for assaying GPCR ligand 
binding in HTS format.  A suicide enzyme (either SNAP- or 
CLIP-tag) is fused to the N-terminus of a GPCR without affect-
ing its binding and activity, and a non-permeant substrate 
labeled with terbium cryptate fluorophore (Lumi4-Tb) is used 
to specifically and covalently label the receptors expressed 
on the cell surface.  The ligands are labeled with red or green 
acceptors.  The long fluorescence lifetime of the terbium 
cryptate allows a time-resolved measurement of FRET emis-
sion when all natural fluorescence disappears.  The assay is 
carried out in a “mix and measure” format, which can be used 
not only for ligand binding studies but also for receptor activ-
ity analysis and GPCR dimerization assessment (as discussed 
below).  The availability of Tagged-GPCR expressing cell lines 
and the fluorophore-labeled ligands are some of the limita-
tions in this approach.

G-protein dependent functional assays
Ligand-binding assays are useful to identify new compounds 
that target GPCRs.  Further analysis of the biological responses 
after compound binding will help complete the whole picture 
concerning the overall characteristics of the compound.  Upon 
ligand binding, GPCRs change their conformation and activate 
coupled G proteins, which subsequently promote second mes-
senger production via downstream effectors.  The correspond-
ing assays measuring either G protein activation or G protein-
mediated events, including second messenger generation 
and reporter activation, are therefore defined as G-protein-
dependent functional assays (Figure 1).

GTPγS binding assay
GTPγS binding assays directly measure the guanine nucle-
otide exchange of G proteins, an early event after GPCR acti-
vation, which is not subjected to amplification or regulation by 
other cellular processes[6].  Typically, the accumulation of non-
hydrolysable GTP analog, such as [35S]-GTPγS, on the plasma 
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membrane prepared from cells expressing GPCRs of interest 
is measured after agonist stimulation.  Unlike receptor bind-
ing assays, the GTPγS binding assay allows discrimination 
between full or partial agonists, neutral antagonists, inverse 
agonists, and allosteric regulators[13].  In reality, this assay is 
experimentally more feasible for receptors coupled to Gαi/o, 

which is the most abundant G protein in many cells and has a 
faster GDP-GTP exchange rate than other G proteins[6].  Nev-
ertheless, [35S]-GTPγS binding assays can also be used with 
GPCRs that couple to the Gαs and Gαq families of G proteins, 
especially in artificial expression systems, or using receptor-Gα 
chimeras, or by immunoprecipitation of [35S]-GTPγS-labeled 
Gα (reviewed in[13]).  A problem with this assay is that it 
requires a filtration step through glass fiber to separate free 
and bound [35S]-GTPγS, which limits assay throughput.  With 
the development of SPA technology, the filtration step can be 
omitted and GTPγS binding assays can be adopted for high-
throughput screening[14, 15].  

With the increased desire to move assays to a non-radio- 
active format, a GTP binding assay based on time-resolved 
fluorescence (TRF) technology utilizing a non-radioactive, 
non-hydrolysable, europium-labeled GTP analog, GTP-Eu, 
has been developed for GPCR screening (DELFIATM GTP 
binding assay from PerkinElmer)[16].  However, this assay still 
requires filtration and washing steps.  The DELFIATM GTP 
binding assay has been validated on several GPCRs, includ-
ing α2-adrenergic[17], neuropeptide FF2 receptor[18], dopamine 
D3 receptor[19] and muscarinic receptors[20], and the results are 
comparable with those obtained using traditional [35S]-GTPγS 
binding assays[21].

cAMP assay
Assays measuring cellular levels of cAMP are dependent on 
the activity of adenylyl cyclase, which is regulated by GPCRs 
coupled to Gαs or Gαi/o protein.  Gαs positively stimulates 
the activity of adenylate cyclase, resulting in increased cel-
lular cAMP.  In contrast, activation of Gαi leads to a negative 

regulation of adenylate cyclase and a decrease in cAMP levels.  
Screening Gαs-coupled receptors is generally straightforward, 
whereas screening Gαi/o-coupled receptors, especially for 
Gαi/o-coupled receptor antagonists, could be extremely dif-
ficult to achieve with high precision using cAMP detection 
methods.  This difficulty arises because of the requirement to 
pre-stimulate adenylate cyclase with forskolin, which should 
be titrated during assay optimization, to inhibit the response 
with agonist and then measure reversal of the agonist effect 
with antagonists.  In addition, to counteract the natural 
degradation of cAMP to AMP by phosphodiesterase (PDE) 
enzymes, an inhibitor of PDE (eg, IBMX) might be required in 
the system during assay optimization.  cAMP levels are typi-
cally measured using a competition assay in which cellular 
cAMP competes with an introduced, labeled form of cAMP for 
binding to an anti-cAMP antibody.  

Radiometric assays, such as the SPA cAMP assay from GE 
Healthcare and the FlashPlateTM cAMP assay from Perkin-
Elmer using 125I-labeled cAMP, are widely used.  More 
recently, these assays have been replaced with fluorescence- 
or luminescence-based homogenous assays to avoid the use of 
radioactivity.  There are several newer radio-free approaches 
for cAMP detection.  One such assay is based on Enzyme Frag-
ment Complementation (HitHunterTM) and was introduced 
by DiscoveRx (http://www.discoverx.com).  Cellular cAMP 
competes with cAMP labeled with a small peptide fragment 
of β-galactosidase for binding to an anti-cAMP antibody.  The 
resulting free labeled-cAMP complements with the enzyme 
fragment, producing active β-galactosidase, which is detected 
with fluorescent or luminescent substrates[22, 23].  AlphaScreenTM 

from PerkinElmer is a sensitive bead-based proximity chemi-
luminescent assay.  Cellular cAMP competes with a biotiny-
lated cAMP probe recognized by a streptavidin donor and 
anti-cAMP antibody-conjugated acceptor beads.  Release of 
the biotinylated cAMP from the antibody results in the dis-
sociation of the streptavidin donor from its acceptor, which 
can be measured as a decrease in the chemiluminescent signal 
(http://www.perkinelmer.com).  In addition, fluorescence 
polarization (FP)-based cAMP kits are available from Perkin-
Elmer, Molecular Devices and GE Healthcare.  When exposed 
to polarized light, the emission from an antibody-bound 
fluorescent-labeled cAMP is also polarized due to restricted 
molecular rotation.  When the labeled cAMP is replaced on the 
antibody by cellular cAMP, the emission becomes more depo-
larized because it can rotate freely in solution.  With the avail-
ability of red-shifted fluorophores, the signal-to-noise ratios 
have been greatly improved[24].  Furthermore, HTRF-based 
cAMP detection is available from Cisbio.  With this method, 
novel donor (cAMP antibody labeled with europium cryptate) 
and acceptor (cAMP labeled with a modified allophycocyanin 
dye) pairs are designed to increase the stability of the signal 
and make this assay highly sensitive and reproducible for 
cAMP measurement[12].  Finally, the cAMP GlosensorTM assay 
is a luciferase biosensor-based assay from Promega[25].  Upon 
cAMP binding, the conformational change in the biosensor 
leads to the activation of luciferase and increased light output.  

Figure 1.  Receptor binding and G-protein-dependent assays.  Schematic 
representation of receptor binding and major pathways activated by 
different G proteins.  Red indicates the detection points of commonly used 
HTS assays: GTPγS binding, cAMP detection, IP3/IP1 detection, Ca2+ flux 
and reporter expression.
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This type of assay can be used to measure GPCR function in 
a non-lytic live-cell format, enabling facile kinetic measure-
ments of cAMP accumulation or turnover in living cells.  The 
assay also offers a broad dynamic range, showing up to 500-
fold changes in light output.  Extreme sensitivity allows the 
detection of Gαi-coupled receptor activation or inverse agonist 
activity in the absence of artificial stimulation by compounds 
such as forskolin (http://www.promega.com/glosensor).  A 
direct comparison of AlphaScreenTM, HTRF, HitHunterTM, and 
FP cAMP assays suggests that there are advantages and dis-
advantages in each method[26].  The AlphaScreenTM and HTRF 
assays are recommended for cells expressing low levels of 
GPCRs because of their higher sensitivities.  

IP3/IP1 and Ca2+ assays
Stimulation of Gαq or Gαi coupled-GPCRs activates phos-
pholipase C (PLC), which hydrolyzes phosphatidylinositol 
bisphosphate (PIP2) to form two second messengers, inosi-
tol 1,4,5-triphosphate (IP3) and DAG.  While DAG activates 
protein kinase C (PKC), IP3 activates the IP3 receptor on the 
endoplasmic reticulum (ER) resulting in an efflux of Ca2+ from 
the ER to the cytoplasm and an elevation of intracellular Ca2+.  
IP3 is very rapidly hydrolyzed to IP2, then to IP1 and finally 
to inositol by a series of enzymatic reactions[27].  The radioac-
tive IP3 assay measures 3H-inositol incorporation and is a 
traditional assay for the assessment of PLC activity, but it is 
not suitable for the screening of large compound collections 
because it requires a cell wash step and generates radioactive 
waste.  An SPA platform has been developed to achieve higher 
throughput and homogenous assays in measuring IP accumu-
lation.  

There are a few non-radiometric technologies used for the 
measurement of IP3, including AlphaScreen™ (PerkinElmer) 
and HitHunter™ Fluorescence Polarization (DiscoveRx) 
assay.  Recently, a homogeneous, non-radioactive TRF assay 
for measuring IP accumulation, IP-One HTRF™, was released 
by Cisbio (http://www.htrf.com).  The basis for the assay 
is a reduction in energy transfer between acceptor IP1 and a 
europium-conjugated IP1 antibody as cellular IP1 accumulates 
and replaces the acceptor IP1 in binding the IP1 antibody.  
Compared to earlier kits using IP3-binding proteins to specifi-
cally measure IP3, the IP-One assay takes advantage of the fact 
that LiCl inhibits the degradation of IP1, the final step in the 
inositol phosphate cascade, allowing it to accumulate in the 
cell and to be measured as a substitute for IP3.  This assay also 
does not require a kinetic readout.  Data reported by Cisbio 
show that the assay can be used with endogenously or heter-
ologously expressed GPCRs in either adherent or suspension 
cells to quantitate the activity of agonists, antagonists, and 
inverse agonists.  Additionally, the efficacy data from the IP-
One assay correlate well with those from calcium assays and 
traditional IP3 assays (http://www.htrf.com).  This assay can 
be adopted for ultra high-throughput screening in the 1536-
well plate format and has been tested with cell lines express-
ing M1 acetylcholine, FFAR1, vasopressin V1b, and neuropep-
tide S receptors[28].

As previously mentioned, intracellular Ca2+ is another sec-
ond messenger for GPCR signaling.  GPCRs that naturally 
couple to Gαq produce a ligand-dependent increase in intra-
cellular Ca2+.  However, Gαi/o, Gαs, or Gα12-coupled GPCRs 
can also be “switched” to induce an increase in intracellular 
Ca2+ either by the expression of a chimeric G-protein (Gαqi5 or 
Gαqo5) or a promiscuous G-protein (Gα16 or Gα15) (reviewed 
in[29]).  The Ca2+ assay is very popular in GPCR screening 
owing to the availability of cell-permeable Ca2+-sensitive fluo-
rescent dyes (such as Fluo-3 and Fluo-4) and automated real-
time fluorescence plate readers, such as FLIPR™ from Molecu-
lar Device.  Molecular Device also offers fluorescent dye kits, 
which contain proprietary quenching molecules that allow cel-
lular loading of dye without the need of subsequent cell wash-
ing to remove excess dye[30].  The integrated pipetting capabili-
ties of the FLIPR™ allow ultra high-throughput screening in 
384- or 1536-well format with the ability to detect agonists, 
antagonists, and allosteric modulators all in one assay.  The 
use of fluorescent dyes can also be replaced by the use of Ca2+-
sensitive biosensors.  Recombinant expression of the jellyfish 
photoprotein aequorin, which provides an intense luminescent 
signal in response to elevated intracellular Ca2+ in the pres-
ence of a coelenterazine derivative, has also been developed 
for functional screens of GPCRs[31].  With the overexpression 
of promiscuous G-proteins, the Ca2+ assay does not require the 
prior knowledge of G protein coupling conditions and signal-
ing pathways of the receptor, so it is widely used to de-orphan 
GPCRs[32, 33].  

Although Ca2+ assays are robust and easily amenable to 
HTS, there are some important shortcomings.  They cannot be 
used to screen for inverse agonists because increases in basal 
Ca2+ are not observed in cells expressing constitutively active 
Gαq-coupled receptors.  In addition, calcium flux occurs rap-
idly and transiently and is not suitable to detect slow binding 
agonists.  In such conditions, an IP1 accumulation assay will 
be more useful.  Furthermore, false positive signals obtained 
from fluorescent and nuisance compounds are a problem, and 
the sensitivity is often insufficient to allow the use of primary 
cells.  

Reporter assay
GPCR activation is well known to alter gene transcription 
via responsive elements for second messengers including the 
cAMP response element (CRE), the nuclear factor of activated 
T-cells response element (NFAT-RE), the serum response 
element (SRE) and the serum response factor response ele-
ment (SRF-RE, a mutant form of SRE), all of which are located 
within the gene promoter regions (reviewed in[34]).  Therefore, 
cell-based reporter assays provide another popular and cost-
effective HTS platform for GPCR screening.  Reporter gene 
constructs usually contain second messenger responsive ele-
ments upstream of a minimal promoter, which in turn regu-
late the expression of a selected reporter protein.  Commonly 
used reporters are enzyme proteins with activities linked to a 
variety of colorimetric, fluorescent or luminescent readouts, 
such as luciferase, alkaline phosphatase, β-galactosidase, 
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β-lactamase and a variety of fluorescent proteins.  Among 
them, luciferase is the reporter of choice, especially in high-
throughput screening due to its sensitivity, broad dynamic 
range, lack of endogenous activity and low interference com-
ing from the compounds[35].  

The advantages of reporter gene assays include the wide 
linearity and sensitivity of the technique and a large signal-
to-background ratio, making them suitable for the detection 
of weak GPCR agonists or allosteric modulators.  Reporter 
gene assays are also easy to set up and can be scaled down to 
extremely low assay volumes in 1536- or 3456-well formats.  
Despite these advantages, some concerns have been raised, 
such as the requirement for long incubation periods, difficulty 
in antagonist detection due to reporter accumulation and the 
higher potential for false positives because the signal event is 
distal from receptor activation.  Concerns about the long incu-
bation time and accumulation of reporter have been addressed 
through the use of destabilized reporters (available from Pro-
mega).  The higher false positive rate due to the distal signal-
ing event could be partially resolved with by the co-expression 
of a constitutively expressed internal control[35], so compounds 
nonspecifically affecting gene transcription could be ruled 
out.  Chen et al demonstrated that by combining pathway-
specific reporter assays, all four major G protein subfamilies 
and downstream pathways could be studied in one luciferase 
reporter assay format.  This combination could help establish 
receptor-G protein profiles for specific receptors and aid drug 
screening for pathway-specific GPCR modulators[34].

Generic G-protein independent functional assays
Receptor internalization assay
The concept of the GPCR internalization assay is based on the 
common phenomenon of GPCR desensitization, which has 
been demonstrated for numerous GPCRs (reviewed in[36]).  
In the desensitization process, GRKs phosphorylate agonist-
activated GPCRs on specific serine and threonine residues, 
and cytosolic β-arrestins are recruited to the cell membrane by 
GRK-phosphorylated GPCRs.  β-arrestins uncouple GPCRs 
from their cognate G proteins and target the receptors to 
clathrin-coated pits for endocytosis.  With the development of 
image-based, high-content screening (HCS) systems, the inter-
nalization of GPCRs is now a quantifiable process.  

To date, most high-throughput, cell-based screens have 
been whole-well cell assays that quantify one molecular event 
or provide a single readout of a complex biological process 
(eg, measurement of intracellular Ca2+ concentration for Gαq-
coupled GPCR activation) — they have been one-dimensional.  
HCS is a relatively new technology, introduced approximately 
10 years ago, that combines high-resolution fluorescence 
microscopy with automated image analysis (reviewed in[37]).  
This technology offers multi-dimensional or multi-parametric 
readouts by monitoring various biomolecules labeled with 
different fluorophores.  The multi-parametric data generated 
by HCS can also provide temporal and spatial information 
for biomolecules, thus enabling a more sophisticated under-
standing of responses in the cell after stimulation.  There are 

a few HCS systems currently available; some are based on 
automated epi-fluorescent microscopes, such as the Cellom-
ics ArrayScanTM Series from Thermo Scientific (http://www.
thermo.com.cn/HCS), while others are equipped with confo-
cal optics, such as the INCellTM Analyzer 3000 from GE Health-
care and OperaTM from Evotec Technologies.  More recently, 
the development of a laser-scanning fluorescence microplate 
cytometer, for example, the AcumenTM Explorer from TTP 
Lab Tech, offers even higher throughput in these multiplexing 
assays.

In contrast to the aforementioned Ca2+, cAMP and reporter 
assays, the internalization assay is independent of the asso-
ciated G protein subclass or individual GPCR intracellular 
signaling pathway.  Thus, there is no need to have prior 
knowledge of the signaling pathways of a GPCR before using 
this assay.  The internalization assay is particularly useful for 
de-orphaning GPCRs, while the imaging-based GPCR inter-
nalization assays also offer the general advantage of the HCS 
format.  

There are several ways to monitor the internalization pro-
cess of GPCRs.  For GPCRs with known ligands, fluorophore-
labeled specific ligands can be used to detect the internaliza-
tion of the receptors.  Fluorescent ligands have been used since 
the mid-1970s.  When coupled to the growing exploitation of 
imaging-based HCS analysis, it is clear that fluorescent mol-
ecules offer a safer, more powerful and more versatile alterna-
tive to traditional radioligand binding assays[38].  Another way 
to visualize the internalization of a GPCR is to co-internalize 
a specific antibody, directed either against an extracellular 
domain of the receptor or against an N-terminal epitope tag[39].  
The primary antibody is co-internalized with the receptor 
upon agonist stimulation and then detected with a fluoro-
phore-labeled secondary antibody.  Considering the cost of 
antibodies and the tedious procedure of immunofluorescent 
staining, this method is commonly used for GPCR signaling 
studies but not large-scale drug screening.  GPCRs tagged 
with fluorescent proteins (GFP or RFP) are the most common 
setup for HCS of receptor internalization (Figure 2) and are 
widely used for receptor deorphanization.  When internal-
ized, these tagged-GPCRs form grain-like objects within the 
cells.  The Spot detector bio-application in the ArrayScanTM 
system or the granularity analysis module of the INCellTM 
Analyzer can identify, analyze and quantify these grain-like 
structures[40, 41].  With the EGFP-tagged GPR120 internalization 
assay, Hirasawa and colleagues de-orphaned this receptor 
and found that unsaturated long-chain free fatty acids activate 
GPR120 and promote GLP-1 secretion[42].

β-arrestin recruitment assay
β-arrestins are cytosolic proteins that bind to ligand-activated 
GPCRs, uncouple the receptors from G proteins and target 
the receptors to clathrin-coated endocytic vesicles.  β-arrestin 
recruitment is a ubiquitous mechanism of negative regulation 
of GPCR signaling that has been demonstrated for almost all 
GPCRs[43].  More recently, β-arrestins have themselves been 
shown to act as signaling scaffolds for numerous pathways, 
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such as c-Src, ERK 1/2, and Akt, in a G protein-independent 
manner[4].  G protein and β-arrestin pathways were found to 
be distinct and could be pharmacologically modulated inde-
pendently with “biased ligands”[44].  Therefore, β-arrestin-
based assays are more interesting, potentially providing new 
insights into the functional selectivity (biased agonism) of 
GPCR signaling.  These insights may help eliminate undesir-
able side effects by activating certain pathways but not others.  
Therefore, β-arrestin recruitment assays provide novel, uni-
versal, and G-protein independent ways for GPCR screening 
and drug discovery.  Such assays are particularly useful for 
the screening of Gαi-coupled GPCRs, which traditionally suf-
fer from a small assay window in second messenger detection 
systems, and orphan GPCRs.  

The first commercialized β-arrestin recruitment assay, Trans-
fluorTM, was originally licensed by Norak Biosciences in 1999 
from Duke University Medical Center and is now available 
from Molecular Devices.  The TransfluorTM assay is performed 
using GFP-tagged β-arrestin.  The redistribution of diffuse 
β-arrestin-GFP from the cytoplasm to agonist-occupied recep-
tor-containing pits or vesicles can be monitored quantitatively 
with a high content imaging system, such as the INCellTM Ana-
lyzer, ArrayScanTM, AcumenTM or ImageXpressTM [45–47].  Taking 
advantage of these HCS instruments, the TransfluorTM assay 
provides robust high-throughput screening for compounds 
targeting GPCRs[48, 49].  The benefits of this assay include the 

following: (1) no fluorescent dyes or secondary substrates are 
required; (2) the cell imaging assay allows parallel detection 
of putative compound liabilities, such as cytotoxicity; (3) visu-
alization of β-arrestin localization (to the membrane or to the 
vesicles) and (4) multiplexing with the receptor internalization 
assay (Figure 2) and providing additional information regard-
ing drug effect with respect to ligand-induced trafficking.  
Like any other imaging-based assays, to obtain high quality 
images for further software analysis, the cell type used should 
be grown in a monolayer, have good adherence properties and 
have a large cytoplasm-to-nucleus ratio.  Before conducting a 
HTS screening for orphan GPCRs, a ligand independent trans-
location assay (LITe™), which utilizes a constitutively active 
GRK2 to phosphorylate the receptor and initiate GPCR-β-
arrestin interaction, is required to verify that the receptor can 
indeed recruit β-arrestin-GFP after stimulation[50].

Alternatively, several non-imaging-based β-arrestin recruit-
ment assays, such as Bioluminescence Resonance Energy 
Transfer (BRET), PathHunterTM technology (DiscoveRx) and 
the TangoTM assay (Invitrogen), are available.  The BRET 
assay was one of the earliest approaches utilized for assessing 
GPCR-β-arrestin interactions and can be scaled for HTS[51, 52].  
The receptor of interest is tagged at the C-terminus with a 
fluorescent protein tag (such as eGFP2, GFP10 or YFP) and 
the β-arrestin is tagged with a Renilla luciferase (RLuc) or vise 
versa.  Upon β-arrestin recruitment, the two tags come into 
close proximity and the light emitted from the RLuc reac-
tion excites the GFP, which then emits a detectable signal at 
a higher wavelength (Figure 3A).  BRET is calculated as the 
ratio of the two emissions (GFP/RLuc).  It was reported that 
increased BRET sensitivity can be achieved by using RLuc8/
YPet and RLuc8/RGFP as donor/acceptor couples[53].

Invitrogen’s Tango™ GPCR Assay System is a platform 
based on a protease-activated reporter gene (Figure 3B).  
β-arrestin is fused to a TEV protease, while GPCR is extended 
at its C-terminus with a protease cleavage site followed by 
the transcription factor Gal-VP16[54].  Upon GPCR activation, 
protease-tagged arrestin is recruited to the receptor and the 
Gal-VP16 that is fused to the receptor is cleaved and enters 
the nucleus to regulate the transcription of a β-lactamase 
reporter gene.  The β-lactamase catalyzes the cleavage of a 
modified substrate tagged with two fluorophores, and the 
change in FRET signal between these two fluorophores can 
be monitored.  Tango™ GPCR assays have been validated for 
a diverse array of GPCRs, including receptors related to each 
of the major G protein pathways and activated by a variety of 
ligand types[55, 56].  

The PathHunterTM assay developed by DiscoveRx utilizes 
enzyme fragment complementation of β-galactosidase and 
subsequent enzymatic activity to measure receptor−β-arrestin 
interactions (Figure 3C).  In this assay, β-arrestin is fused 
to an N-terminal deletion mutant of β-galactosidase that is 
catalytically inactive, and GPCR is tagged at the C-terminus 
with a small (4 kDa) fragment derived from the deleted 
N-terminal sequence of β-galactosidase (ProLink™).  Upon 
GPCR-β-arrestin interaction, the two parts of β-galactosidase 

Figure 2.  TransfluorTM and receptor internalization assays.  Schematic 
representation of TransfluorTM β-arrestin recruitment assay multiplexed 
with a receptor internalization assay.  The receptor is tagged at the 
C-terminus with RFP, and β-arrestin is tagged with GFP.  In the resting 
state, the receptor is located on the cell membrane and β-arrestin is 
localized in the cytoplasm (Phase 0).  A few seconds to several minutes 
after stimulation, the receptor is phosphorylated by GRK and β-arrestin 
is recruited to the cell membrane (Phase 1).  β-arrestin binding leads to 
the internalization of the receptor-β-arrestin complex, initially forming 
internalization pits (Phase 2).  For fast-recycling GPCRs, the receptor 
dissociates with β-arrestin and returns to the plasma membrane.  For 
slow-recycling GPCRs, the receptor-β-arrestin complex traffics towards the 
endosome and forms large vesicles (Phase 3).
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are brought into proximity, which results in the activation 
of the enzyme, cleavage of the substrate and generation of a 
chemiluminescent signal.  Similar to Tango™ GPCR assays, 
PathHunter™ has also been validated for a diverse array of 
GPCRs and is widely accepted in industrial and academic 
drug-screening laboratories[57, 58].  Both assays also have com-
mercially available, assay-ready cell lines for a large number 
of GPCRs.  There are several advantages in the PathHunter™ 
assay, including a homogeneous assay with enzyme-amplified 
robust signal.  The chemiluminescent signal is also low in 
background and resistant to interference from fluorescent 
compounds.  One disadvantage of this platform is that the 
time window for measurement is limited, so the assay only 

captures a snapshot of β-arrestin-receptor binding during 
the period of substrate incubation.  However, this limitation 
can also be viewed as an advantage when using instruments 
capable of real-time detection to study the kinetics of GPCR-β-
arrestin interaction.  

Label-free whole cell assays
Label-free technologies, which emerged within the past few 
years, have the potential to substantially change some aspects 
of whole-cell assays, including GPCR screening (reviewed 
in[59]).  Many assays widely employed for GPCR ligand dis-
covery tend to provide reductionist views of cell signaling.  
These assays are extremely robust and have been successfully 
implemented for measuring one particular functional activ-
ity of GPCRs, but often fail to account for the summation of 
events associated with the activation of one or more receptors.  
The emergence of label-free technologies presents a different 
strategy in measuring signal transduction, with integrated or 
cumulative responses rather than the resolution of individual 
events.  Label-free, whole cell assays generally employ a bio-
sensor that converts the summation of ligand-induced changes 
in living cells to optical, electrical, calorimetric, acoustic, mag-
netic or other quantifiable signals.  They can detect changes in 
cellular features including adhesion, proliferation, migration, 
and cell death.  

Most of the label-free instruments available for GPCR 
screening use either an optical or electrical biosensor to detect 
cellular changes after stimulation.  The optical biosensors are 
also called resonant waveguide grating (RWG) biosensors, 
which utilize grating structures embedded in the bottom of 
microtiter plates (Figure 4B).  When illuminated with broad-
band or monochromatic light, these grating surfaces reflect 
a narrow band of light that is characteristic of the refractive 
index near the grating surface.  These instruments can detect 

Figure 3.  Non-imaging-based β-arrestin recruitment assays.  (A) BRET 
assay.  The GPCR is tagged with a RLuc, and β-arrestin is tagged with 
GFP, or vice versa.  Upon β-arrestin recruitment, the two tags come into 
close proximity and the light emitted from the RLuc reaction excites the 
GFP, which then emits a detectable signal at a higher wavelength.  (B) 
TangoTM assay.  β-arrestin is fused to a protease, while GPCR is extended 
at its C-terminus with a protease cleavage site followed by a transcription 
factor (TF).  Upon β-arrestin recruitment, the TF fused to the receptor 
is cleaved and enters the nucleus to regulate the transcription of a 
reporter gene.  (C) PathHunterTM assay.  β-arrestin is fused to a deletion 
mutant of β-galactosidase that is catalytically inactive, and GPCR is 
tagged with a small fragment derived from the deleted sequence of the 
enzyme (ProLink™).  Upon GPCR-β-arrestin interaction, the two parts of 
β-galactosidase are brought into close proximity, which results in cleavage 
of the substrate and generation of a chemiluminescent signal.  

Figure 4.  Principles of the biosensors for label-free, whole-cell detection.  
(A) Schematic representation of an electrical biosensor.  Cells are cultured 
on the surface of arrayed gold microelectrodes.  A low AC voltage at 
variable frequencies is applied to the cell layer and both the extracellular 
current and transcellular current are measured.  (B) Schematic represen
tation of an optical biosensor.  Cells are cultured on the surface of 
the biosensor with an embedded grating structure.  Only the mass 
redistribution within the bottom portion of cells is directly measured.
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either angle- or wavelength-shift[60].  The refractive index is 
influenced by the physical properties of the cell layer in con-
tact with the grating surface.  When a GPCR is activated and 
subsequent signal transduction changes the biomolecular 
concentration within an approximately 200 nm range of the 
contact surface, the disturbance in local refractive index can 
be detected as a shift in resonant angle or wavelength.  The 
current optical-based instruments include BINDTM (SRU Bio-
systems) and EpicTM (Corning Inc) systems.  Although initially 
designed for in vitro molecular binding assays, both systems 
were successful in studying cell morphological changes and 
GPCR signaling[61, 62].  

Electrical biosensors, also known as impedance-based bio-
sensors, mainly consist of a substrate, an electrode and a cell 
layer in close contact with the electrode (Figure 4A).  Giaever 
and Keese of GE first reported the use of impedance to mea-
sure cellular processes[63].  In their early studies, fibroblasts 
cultured on thin-film gold electrodes were found to impede 
the flow of a very weak alternating current.  The impedance 
change could be monitored in real-time, and the fluctuation 
of impedance was dependent on ATP concentration and actin 
polymerization, and was thus linked to cellular motion[64].  
Since then, electrical-based detections have been applied to 
study a wide variety of cellular events, including cell adhe-
sion and spreading[65], cell morphological changes[66], and cell 
death[67].  It is now generally accepted that the impedance 
value is the sum of cellular events, including the relative den-
sity of cells over the electrode surface and the relative adher-
ence of these cells.  

Applied Biophysics launched ECISTM, the first commercially 
available instrument for electrical-based whole cell detection 
with high-throughput capability (up to 96-well detection), in 
1995.  The more recently available (2008) xCELLigenceTM Sys-
tem from Roche Applied Science and ACEA Biosciences is also 
built to fit into cell culture incubators and to measure long-
term cellular responses that occur over hours to days.  Both 
systems have been used to detect GPCR activity for hours[68, 69].  
A more high-throughput system, CellKeyTM, was developed 
by MDS Analytical Technologies, which is designed to detect 
acute cellular responses in 96- and 384-well formats.  

Based on both the CellKeyTM and EpicTM systems, scien-
tists observed distinct response profiles depending on the 
G-protein pathway activated[62, 70, 71].  Several studies compared 
the EpicTM system and traditional Ca2+ or cAMP assays using 
CHO cells expressing the muscarinic M2, M3 or dopamine D3 
receptors.  Most of the results from the EpicTM were consistent 
with data from cAMP or Ca2+ readouts with few exceptions, 
and the EpicTM was found to detect weak activity that was 
not observed with the label-based assays[72, 73].  Many studies 
with GPCR ligand sets also demonstrated similar rank-order 
potency values between CellKeyTM impedance and traditional 
Ca2+ or cAMP assays[74–76].  

The sensitivity, precision and high-throughput of some 
label-free instruments warrant their use in HTS, although the 
cost of consumables might limit broader application.  These 
systems have also been used for ligand selectivity studies[76–78], 

endogenous receptor profiling in cell lines commonly used in 
drug discovery[62, 74, 77], systemic cell biology studies of GPCR 
signaling[77, 79], and many other aspects of GPCR research.  Like 
any other functional assay, label-free, whole cell assays are 
also prone to false positives.  Another unique problem associ-
ated with label-free systems is the possibility that signaling 
through multiple pathways with opposing effects may cause 
a lack of overall response, resulting in a false negative out-
come[70].  In combination with traditional assays, biosensor-
based label-free methods have a promising future and should 
further strengthen the role of GPCRs in drug discovery and 
development.

Receptor dimerization assay
Many, but perhaps not all[80], GPCRs interact with each other 
at the plasma membrane to form dimers, oligomers or even 
higher-order complexes.  The dimerization of GPCRs can be 
observed early after biosynthesis and profoundly impacts 
receptor pharmacology and signaling (reviewed in[81]).  For 
class C GPCRs, heterodimerization is obligatory for recep-
tor function.  Many class A GPCRs, however, can function as 
homodimers when individually expressed in cells, and het-
erodimerization between class A GPCRs may lead to distinct 
and unique signaling properties even when stimulated with 
the same ligand, a phenomenon termed “heteromer-directed 
signaling specificity.” Such phenomena are believed to be 
involved in the physiological roles of GPCRs and in disease-
specific dysregulation of a receptor effect[82, 83].  Therefore, 
compounds that specifically target GPCR heterodimers or 
affect receptor dimerization may have the potential to achieve 
specific therapeutic effects[84].  As a result, there is consider-
able interest in designing assays to assess the effect of com-
pounds on GPCR dimerization.  Various technologies have 
been established to monitor receptor dimerization, including 
resonance energy transfer approaches (FRET or BRET) and the 
recently developed PathHunterTM GPCR dimerization system 
(DiscoveRx) and Tag-liteTM GPCR dimer assay (Cisbio).

In commonly used FRET or BRET-based approaches, donor 
and acceptor molecules are genetically fused to the C-terminus 
of GPCRs, which are overexpressed in the cells (Figure 5A).  
Resonance energy transfer occurs when donor and acceptor 
molecules are brought into close proximity as a consequence 
of GPCR dimerization (reviewed in[85, 86]).  However, one 
limitation of such traditional FRET and BRET assays is that 
in the overexpression system, resonance energy transfer can 
also occur within the intracellular compartments such that 
it is difficult to demonstrate a specific signal resulting only 
from a direct interaction of proteins at the cell surface.  In 
addition, low signal-to-noise ratio resulting from the intrinsic 
fluorescence background of a cell and the overlap between 
the emission spectra of FRET donors and acceptors is another 
limitation of the commonly used resonance energy transfer 
techniques.

The GPCR dimerization assay with Tag-liteTM is a method 
combining TR-FRET with SNAP-tagTM technology (Cisbio), 
enabling quantitative analysis of protein-protein interactions 
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at the surface of living cells in a 96- or 384-well format.  In this 
assay, GPCRs are tagged with either a SNAP- or CLIP-tag at 
the N-terminus, which can be subsequently labeled with their 
corresponding cell-impermeable substrates carrying appropri-
ate TR-FRET-compatible fluorophores, typically using terbium 
cryptate as a donor and a green or red fluorescent molecule as 
an acceptor (Figure 5B).  Several possible dimer combinations 
exist in this assay: 1/4 of the dimers contain both receptors 
labeled with the donor, 1/4 of the dimers contain both recep-
tors labeled with the acceptors, and 1/2 of the dimers contain 
one receptor labeled with the donor and one receptor labeled 
with the acceptor.  Only the last fraction will emit the FRET 
signal[87].  This assay was validated with well-known GPCR 
dimers and the oligomeric assembly of both class A and class 
C GPCRs was confirmed[88].

The PathHunterTM GPCR dimerization system from 
DiscoveRx is another platform for GPCR heterodimeriza-
tion analysis.  Cell lines utilized in the previously described 
PathHunterTM β-arrestin recruitment assay can be used as 
the starting material.  In these cell lines, β-arrestin is fused 
to the larger portion of the β-galactosidase enzyme accep-
tor, and the smaller 42-amino acid ProLink™ tag is attached 

to one of the GPCR targets.  A second untagged GPCR can 
be introduced into the cells and the transactivation effects 
of the untagged GPCR on the ProLink™-tagged GPCR can 
be measured by the recruitment of β-arrestin to the tagged-
GPCR using PathHunter detection reagents (Figure 5C).  The 
transactivation strength can be estimated as a ratio between 
the cellular response to the agonist of the untagged GPCR and 
the response to the agonist of Prolink™-GPCR.  The assay can 
be used to investigate the interaction between GPCR pairs, as 
well as screen for compounds that modulate GPCP activity 
through enhancing or disrupting GPCR heterodimerization in 
a 384-well format (http://www.discoverx.com/documents/
DRx_poster_Heterodimer_DOT09_REV1.pdf).

In silico drug discovery
GPCR drug discovery usually relies on HTS for hit identifica-
tion.  However, with the development and maturation of com-
putational methods for drug discovery, HTS may be comple-
mented by in silico screening.  This combination of approaches 
will reduce both time and cost through reducing the number 
of compounds to be experimentally tested and increase the 
probability of identifying novel lead compounds.  Both ligand-
based and structure-based methods for in silico screening have 
been successfully applied to GPCR drug discovery.  

Structure-based screening requires reliable 3D structures for 
the target protein, which poses a challenge for GPCRs because 
of the heterogeneity of this receptor family and the lack of 
crystallographic data.  Until 2008, the only available GPCR 
structure was that of bovine rhodopsin[89].  In the last few 
years, a number of different technological developments[90] 
have resulted in the structures of several new GPCRs, includ-
ing β2 adrenergic receptor[91], A2a adenosine receptor[92], 
CXCR4 chemokine receptor[93], dopamine D3 receptor[94] and 
histamine H1 receptor[95].  Additionally, the first structure of 
a signal transduction complex (β2 adrenergic receptor and 
Gαs) has also been reported[96].  Nevertheless, the relatively 
limited 3D information for GPCRs is an obstacle for structure-
based drug discovery.  In the absence of crystal structures, 
both homology modeling and ab initio techniques have been 
applied to model the 3D structures of GPCRs and used for in 
silico screening (reviewed in[97, 98]).  

When a crystal structure of the targeted protein is not avail-
able and reliable modeling is not feasible, a problem common 
to many GPCRs, ligand-based drug discovery methods remain 
the major computational approach for the analysis of the 
growing data sets for GPCR ligands.  Ligand-based screening 
is highly efficient and can be productive with sufficient infor-
mation on known ligands.  Incorporating ligand information 
with homology modeling has also been applied with good 
results (reviewed in[97, 99, 100]).  

Conclusion
Choosing the right primary HTS assay for GPCRs, one of the 
most important protein families for therapeutic targeting, is 
critical in early drug discovery.  With the availability of all the 
aforementioned assays, a few important things must also be 

Figure 5.  Receptor dimerization assays.  (A) BRET dimerization assay.  
GPCRs are tagged with a RLuc donor and a GFP acceptor.  Upon receptor 
dimerization, the two tags come into close proximity and energy transfer 
occurs.  (B) Tag-liteTM dimerization assay.  GPCRs are tagged with either a 
SNAP- or CLIP-tag at the N-terminus, which can be subsequently labeled 
with their corresponding cell-impermeable substrates carrying appropriate 
TR-FRET-compatible fluorophores.  (C) PathHunterTM heterodimerization 
assay.  β-arrestin is fused to the larger portion of a β-galactosidase 
enzyme acceptor, and the ProLink™ tag is attached to one of the GPCR 
targets.  A second untagged GPCR can be introduced into the cells, and 
the transactivation effects of the untagged GPCR on the ProLink™-tagged 
GPCR can be measured by the recruitment of β-arrestin to the tagged-
GPCR using PathHunter detection reagents.
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considered.  First, the choice of cell line for GPCR expression 
might affect assay development because such cell line might 
lack correct post-translational modification and dimerization 
of GPCRs, and the expression of important signaling mol-
ecules.  Second, the level of GPCR expression also needs to be 
carefully monitored because significant overexpression might 
lead to ligand-independent signaling and shifts in G protein 
coupling.  Third, the functional selectivity (biased signaling) 
of ligands might complicate the screening process.  Assays 
based on one signaling pathway might miss potentially valu-
able compounds acting on other pathways.  Therefore, mul-
tiplexing of assays or a summed readout should always be 
considered.  With the advancement of high-content imaging 
and label-free, whole cell technologies, new GPCR functional 
assays might provide more comprehensive and physiologi-
cally relevant information on lead compounds and might 
improve the success rate in drug discovery.  
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Introduction
Huntington’s disease (HD) is a neurological disorder that is 
caused by an expansion of a polyglutamine tract in the pro-
tein huntingtin (Htt).  Although mutant huntingtin is widely 
expressed in neuronal and non-neuronal cells, it preferentially 
accumulates in striatal neurons and causes neurodegeneration 
in the brain[1].  This phenomenon has led to extensive studies 
of mutant huntingtin on neurons.  Later studies have found 
that in a neuron-glia co-culture system, wild-type glial cells 
protect neurons against neurotoxicity caused by mutant Htt, 
whereas glial cells expressing mutant Htt increased neuronal 
vulnerability[2].  These studies indicate that cell-cell interac-
tions between neurons and glial cells play an important role in 
HD pathology[3, 4].  In addition, mutant Htt expressed in glial 
cells could exacerbate neurological symptoms in HD trans-

genic mice, so the role of glial cells in HD neuropathology 
should not be neglected[5].  

Recently, some studies have proven that the selective 
degeneration of striatal neurons is relevant to dysfunctional 
glial protective mechanisms in HD pathology[2, 6].  On the 
membranes of astrocytes, which are the major subtype of glial 
cells, there are two types of glutamate transporters (GLT-1 
and GLAST) that do most of the work in clearing extracellular 
excitatory neurotransmitters[7, 8].  It has been shown that small 
fragments of N-terminal mutant Htt (such as N-208, N-171), 
which were reported to be more pathogenic than full-length 
mutant Htt, caused decreased expression of GLT-1[2, 5].  How-
ever, these fragments had been cut occasionally and might 
not exist in physiological and pathological conditions, so they 
could not simulate the condition of HD patients completely.  
In this study, a termination codon was inserted into Htt at 
the N-terminal 552 amino acid of caspase2/3 and generated 
a truncated Htt fragment 1-552 aa (Htt-552).  Mutant Htt-552 
had been found in the brains of HD patients, which allows us 
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Aim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of 
mutant huntingtin (Htt-552).  
Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups.  An astrocytes model of Huntington’s disease 
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scintillation counting. 
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to achieve a similar pathological condition of HD.  Moreover, 
we intended to find out if mutant Htt-552 expressed in cul-
tured astrocytes had the same effects as N-208 and N-171.

It was reported that the decreased glutamate uptake in 
astrocytes was mainly caused by the decreased expression 
of GLT-1, which has a gene promoter that carries multiple 
Sp1 binding sites[9].  The transcription of GLT-1 was Sp1-
dependent, and it had been reported that mutant Htt bound 
more Sp1 and reduced Sp1-mediated GLT-1 expression in 
astrocytes.  This could lead to defective glial glutamate uptake 
and increased neuronal excitotoxicity[10].  Therefore, we want 
to know if the expression of GLT-1 would return to a normal 
level after mutant Htt had been cleared.

Autophagy is a major degradation pathway for misfolded 
proteins, especially for long-lived proteins.  It was reported 
that enhancing autophagy with rapamycin treatment increased 
mutant huntingtin clearance and decreased the levels of solu-
ble proteins and aggregates in HD cell models[11].  In contrast, 
inhibition of autophagy during autophagosome formation by 
3-MA decreased mutant huntingtin clearance and increased 
the levels of soluble and aggregated mutant huntingtin[12].  In 
our previous studies, we also found that activated autophagy 
could clear mutant Htt effectively[13].  Therefore, in this study, 
we used rapamycin, an autophagy activator, to enhance 
autophagy in astrocytes and to investigate if the expression of 
GLT-1 could be returned to its initial level.  

Materials and methods
Reagents
Huntingtin antibody (1:2000, Cat.MAB2166, Chemicon, Bil-
lerica, MA, USA); β-actin antibody (1:5000, Cat.A5441, Sigma, 
St Louis, MO, USA); LC3 antibody (1:1000, Cat.Ab62721, 
Abcam, University of Cambridge, UK); p62 antibody (1:2000, 
Cat.PW9860, Enzo Life Science, Lausen, CH, USA); GFAP 
(1:2000, Cat.c9205, Sigma, St Louis, MO, USA); DAPI (1:10000, 
Cat. D9564, Sigma, St Louis, MO, USA); GLT-1 (1:3000, Cat. 
ab58571, Abcam, University of Cambridge, UK); GLAST 
(1:5000, Cat.ab416, Abcam, University of Cambridge, UK); 
Cy3-conjugated anti-mouse IgG and HRP-conjugated anti-
mouse IgG (1:5000, Cat 715-165-150 and Cat 715-035-1500, 
Jackson ImmunoResearch, West Grove, PA, USA); rapamycin 
(Cat. R0395, Sigma, St Louis, MO, USA); 3-MA (3-methy-
ladenine, Cat. M9281, Sigma, St Louis, MO, USA); DHK 
(dihydrokainate, Cat.D1064, Sigma, St Louis, MO, USA); and 
[3H]glutamate (Cat.NET1082250UC, Perkin Elmer, Waltham, 
MA, USA) were used in this study.

Primary astrocyte culture
Primary astrocyte cultures were prepared from the cortex of 
1- to 2-day-old postnatal SD rat pups as described in a previ-
ous study[14].  The ethical committee of Soochow University 
approved this study.  Microglial cells were dissociated from 
the culture by shaking cultured glial cells.  An immunoassay 
with antibodies against GFAP was used to identify the purity 
of the astrocytes.

Western blot analysis
Astrocytes were harvested 24 h, 48 h, or 72 h after infection.  
The boiled samples (each containing 10–20 µg of protein) 
were subjected to SDS-PAGE on a 10% acrylamide gel and 
transferred to nitrocellulose membranes (Bio-Rad, Hercules, 
CA, USA).  The membranes were blocked for 1 h in TBST 
containing 5% non-fat milk.  The membranes were then incu-
bated with mouse anti-Htt monoclonal antibody 2166 (1:2000, 
Chemicon) at 4 °C overnight, incubated with horseradish 
peroxidase-conjugated donkey anti-mouse IgG secondary 
antibody (Sigma) at a dilution of 1:5000 for 2 h and finally 
visualized with an enhanced chemiluminescence (ECL) kit 
(Shanghai Sangon Biological Engineering Technology, Shang-
hai, China) according to the manufacturer’s protocol.

Real-time PCR
The real-time PCR experiments were performed accord-
ing to the protocol of the Real-time PCR kit (Cat.DRR041A, 
TAKARA).  The primers were as follows: GAPDH: forward 
primer: 5’-gacaactttggcatcgtgga-3’, reverse primer: 5’-atgcag-
ggatgatgttctgg-3’; GLAST: forward primer: 5’-gcctttgtgctact-
caccgtca-3’, reverse primer: 5’-ctgcagcatccgcatcaga-3’; GLT-1: 
forward primer: 5’-gcaggtggaagtgcgcatgcac-3’, reverse primer: 
5’-cacatactgctcccaggatgaca-3’.

Glutamate uptake assay
After being infected with Ad-Htt-552-18Q, Ad-Htt-552-100Q, 
or Ad-null, the astrocytes were washed with normal saline.  
Half of the cells were pre-incubated with 1 mmol/L dihy-
drokainate (DHK; Sigma Aldrich) for 1 h at 37 °C, and the 
other half were pre-incubated without DHK treatment.  After 
pre-incubation, [3H]glutamate at a concentration of 25 nmol/L 
was added into the solution and incubated for 15 min.  The 
incubation was terminated by rapidly removing the solution, 
and the astrocytes were washed with 4 mL of ice-cold normal 
saline three times.  The astrocytes were lysed in 0.3% NaOH 
with sonication, and the radioactivity was determined by 
using a liquid scintillation counter (Perkin Elmer, Waltham, 
MA, USA).  The protein concentration was measured to nor-
malize the scintillation counting results.  The astrocytes pre-
incubated with 10 mmol/L of unlabeled glutamate served as a 
control to obtain a background value.  The difference between 
the DHK-treated and non-treated samples was obtained and 
reflected GLT-1–specific glutamate uptake (nmol·mg pro-
tein-1·15 min-1).  

Statistical analysis
Statistical significance was assessed by using one-way 
ANOVA with the Newman-Keuls multiple comparison test.  
Calculations were performed using Sigma Plot 4.11 and Prism 
(version 4) software.  Statistical significance was considered 
when P<0.05.  

Results
Expression of Htt-552 in cultured primary astrocytes
The purity of astrocytes reached approximately 98% and met 
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our study’s needs (Figure 1A).  The astrocytes were harvested 
after being infected with Ad-Htt-552-18Q or Ad-Htt-552-100Q 
for 24 h, 48 h, or 72 h.  Then immunohistochemistry stain-
ing and Western blot analysis were performed to identify the 
expression of wild-type Htt (Htt-552-18Q) and mutant Htt 
(Htt-552-100Q) in the astrocytes.  The proper ratio of infection 
is very important to this study.  We found that the adenoviral 
tier, which resulted in 80% of the cultured astrocytes express-
ing mutant Htt, was thought to be ideal (Figure 1B).  Western 
blot analysis showed that persistent stable expression of Htt 
in the astrocytes lasted for at least 72 h after infection (Figure 
1C).

Decreased expression of GLT-1 and glutamate uptake in astro
cytes
Western blot analysis revealed decreased expression of GLT-1 

in astrocytes expressing mutant Htt (Ad-Htt-552-100Q), and 
the decreased expression of GLT-1 appeared to correlate with 
the time-dependent expression of mutant Htt in astrocytes 
(Figure 2A).  However, the level of expression of GLAST 
appeared to be variable in astrocytes but not significantly 
decreased (Figure 2C).  Real-time PCR confirmed that GLT-1 
transcripts were significantly reduced in astrocytes expressing 
mutant Htt for 48 or 72 h (Figure 2B), while GLAST transcripts 
showed no significant changes (Figure 2D).  There was no 
obvious effect on either GLT-1 mRNA or GLT-1 proteins by 
wild-type Htt expression (Ad-Htt-552-18Q).

An interesting question is whether fewer glutamate trans-
porters could alter glutamate uptake in astrocytes.  We decided 
to infect astrocytes with Ad-null, Ad-Htt-552-18Q or Ad-Htt-
100Q for 72 h and then measure their uptake of [3H]glutamate 
as described in the methods section.  The result showed sig-
nificantly decreased glutamate uptake in astrocytes expressing 
mutant Htt, which was closely correlated with altered expres-
sion of GLT-1 (Figure 2E).  It was reported that DHK could 
specifically inhibit the activity of GLT-1 in astrocytes[15].  After 
infecting the astrocytes with Ad-null, Ad-Htt-552-18Q or Ad-
Htt-552-100Q for 72 h, we pre-incubated the astrocytes with 1 
mmol/L DHK for 1 h at 37 °C, and the control was pre-incu-
bated without DHK treatment.  The difference between the 
astrocytes that received the DHK treatment and those that did 
not received the DHK treatment revealed the specific contribu-
tion of GLT-1 to transporting [3H]glutamate.  Consistent with 
the decreased expression of GLT-1, GLT-1-specific glutamate 
uptake was more significantly decreased in astrocytes express-
ing mutant Htt, demonstrating a close association between 
GLT-1 expression and glutamate uptake in astrocytes.  

Enhancing Htt clearance by activation of autophagy
After transfection of cells with Ad-Htt-552-18Q or Ad-Htt-
552-100Q for 48 h, the cells were treated with rapamycin (0.2 
μg/mL), an activator of autophagy, or 3-MA (10 mmol/L), 
an inhibitor of autophagy.  The astrocytes were then har-
vested for Western blot analysis 24 h later.  The microtubule-
associated protein 1A/1B-light chain 3 (LC3) is thought to be 
an autophagic marker[16].  An increased ratio of LC3II to LC3I 
was observed when the astrocytes were treated with rapamy-
cin.  On the contrary, when infected astrocytes were treated 
with 3-MA, the expression of LC3II did not seem to change 
significantly.  But compared with the control, the expression 
of LC3I increased, so the rate of LC3II/LC3I decreased.  These 
results suggested that autophagy was activated by rapamy-
cin and inhibited by 3-MA (Figure 3A).  p62/SQSTM1 is an 
ubiquitin- and LC3-binding protein that could be degraded by 
autophagy and is thought to be a substrate of autophagy[17]. 
We found that the amount of p62 was decreased when cells 
were treated with rapamycin (100Q-rap vs 100Q) (Figure 
3B), while the amount of p62 was increased when cells were 
treated with 3-MA (100Q-3-MA vs 100Q) (Figure 3C).  These 
results confirmed that autophagy was enhanced by rapamycin 
and inhibited by 3-MA.  

Furthermore, we detected the protein levels of Htt.  Western 

Figure 1.  Expression of Htt-552 in cultured astrocytes.  (A) Astrocytes 
were collected from 1- to 2-day-old postnatal rats and purified to the 
third generation.  GFAP is a marker of astrocytes.  DAPI stains cell nuclei.  
Immunofluorescence labeling showed more than 98% of the GFAP-
positive (red) astrocytes.  (B) Immunofluorescent images of cultured glial 
cells that were infected with Ad-Htt-552-18Q (wild type Htt) or Ad-Htt-552-
100Q (mutant Htt) for 24 h show that the ratio of Htt-positive cells to DAPI-
positive cells is almost 80%.  (C) Western blotting analysis of Htt-552 in 
cultured astrocytes 24, 48, and 72 h after infection, showing persistent 
expression of wild type Htt and mutant Htt.  
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blot analysis showed a significant reduction of mutant Htt 
when autophagy was stimulated (100Q-rap vs 100Q) (Fig-
ure 3B), and a significant accumulation of mutant Htt was 
observed when autophagy was inhibited (100Q-3-MA vs 100Q) 
(Figure 3C).  

Recovery of GLT-1 expression and function by rapamycin
It has been reported that the decreased expression of GLT-1 
had been mainly caused by mutant Htt.  As the mutant Htt 
is cleared by enhanced autophagy, could the expression of 
GLT-1 be resumed?  In this study, we detected the expression 
of GLT-1 and glutamate uptake by astrocytes after treatment 

with rapamycin.  Western blot analysis showed a recovery of 
GLT-1 levels in astrocytes when autophagy was activated by 
rapamycin (Figure 4A).  With the treatment of 3-MA, which 
could inhibit the activity of autophagy, the decrease in expres-
sion of GLT-1 appeared to be exacerbated (Figure 4B).  At the 
same time, uptake of [3H]glutamate by astrocytes infected 
with Htt-552 in the presence of rapamycin or 3-MA was deter-
mined.  The result showed a recovery of glutamate uptake by 
astrocytes after treatment with rapamycin.  In contrast, treat-
ment with 3-MA slightly accelerated the decline of [3H]gluta-
mate uptake in astrocytes expressing mutant Htt-552, but the 
effect was not as significant (Figure 4C).

Figure 2.  Decreased expression of GLT-1 and glutamate uptake in astrocytes.  Cultured astrocytes were harvested after expression of Htt-552 for 
24, 48, or 72 h.  The results are shown as means±SD (n=3).  (A) Western blotting analysis was performed, showing decreased expression of GLT-1 
in astrocytes expressing mutant Htt.  cP<0.01, 100Q-24 h vs (con-24 h, null-24 h, 18Q-24 h); fP<0.01, 100Q-48 h vs (con-48 h, null-48 h, 18Q- 
48 h); iP<0.01, 100Q-72 h vs (con-72 h, null-72 h, 18Q-72 h).  (B) The total RNA in astrocytes was extracted after expression of Htt-552 for 72 h.  Real-
time PCR showed decreased GLT-1 transcription in astrocytes expressing mutant Htt for 72 h (iP<0.01 compared with con, null and 18Q).  (C) Western 
blotting analysis showed no significant difference in the expression of GLAST in astrocytes after expression of mutant and wild-type Htt-552.  (D) The 
total RNA in astrocytes was extracted after expression of Htt-552 for 72 h.  Real-time PCR showed no significant difference in GLAST mRNA levels 
in astrocytes.  (E) Decreased glutamate uptake by astrocytes expressing mutant Htt.  GLT-1-specific glutamate uptake was significantly decreased 
in astrocytes expressing mutant Htt (cP<0.01, 100Q vs cont, null, 18Q), as well as the total uptake level (cP<0.01, 100Q vs cont, null, 18Q).  After 
expression of Htt-552 for 72 h, the astrocytes were pre-incubated with 1 mmol/L DHK (specific inhibitor of GLT-1) for 1 h at 37 ºC , and GLT-1-specific 
glutamate uptake was determined (one-way ANOVA with Newman-Keuls multiple comparison test).



389

www.chinaphar.com
Chen LL et al

Acta Pharmacologica Sinica

npg

Figure 3.  Mutant Htt-552 was reduced by enhanced autophagy.  (A) Astrocytes were harvested after being infected for 72 h and treated with rapamycin 
(0.2 μg/mL) or 3-MA (10 mmol/L) for the last 24 h.  Western blotting results showed increased LC3II/LC3I with treatment of rapamycin and decreased 
LC3II/LC3I with the treatment of 3-MA (cP<0.01, rapamycin treatment vs control; eP<0.05, 3-MA treatment vs control).  (B) Western blotting results 
showed p62 expression level were decreased (bP<0.05, 18Q-Rap vs 18Q, eP<0.05, 100Q-Rap vs 100Q) and the level of mutant Htt decreased with 
rapamycin treatment (eP<0.05, 100Q-Rap vs 100Q).  (C) Western blotting results showed P62 expression level were increased (bP<0.05, 18Q-3-MA vs 
18Q; eP<0.05, 100Q-3-MA vs 100Q) and the level of Htt increased (cP<0.01, 18Q-3-MA vs 18Q; fP<0.001, 100Q-3-MA vs 100Q) with 3-MA treatment.  
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Discussion
In HD, mutant Htt is expressed in various types of cells, 
including neurons and non-neuronal cells, but it preferentially 
aggregates in striatal neurons and causes dysfunction in stri-
atal neurons.  There are two possible explanations for this phe-
nomenon.  First, compared with glial cells, lower and impaired 
neuronal ubiquitin-proteasome system activity, which plays a 
critical role in clearing misfolded proteins[18], may account for 
the preferential accumulation of misfolded Htt in neurons as 
well as their selective vulnerability[19–21].  Second, the expres-
sion of mutant huntingtin in glial cells, which could clear 
excess excitatory neurotransmitters from extracellular space, 
contributed to neuronal excitotoxicity[2, 5, 22, 23].  

In this paper, we intended to find out the effect of Htt-552, 
the fragment of Htt that exists in physiological and pathologi-
cal conditions, on glutamate uptake in astrocytes.  GLT-1 and 

GLAST, two important types of glutamate transporters that 
are primarily expressed in astrocytes, were thought to be the 
predominant glutamate transporters and did the most work 
to clear extracellular excitatory glutamate[8].  Previous stud-
ies showed that mutant Htt expressed in astrocytes caused 
decreased GLT-1 both in HD mouse brains and in cultured 
glial cells, but there was no report about mutant Htt-552, 
which existed in the brains of HD patients.  Consistent with 
prior research, we have provided direct evidence that mutant 
Htt-552 in glial cells reduced the expression of GLT-1 but 
not of GLAST and decreased glutamate uptake in astrocytes, 
which was mainly caused by decreased expression of GLT-1.  
Because there are Sp1-binding sites in the promoter of GLT-1 
and the transcription of GLT-1 is Sp1-dependent[24, 25], previous 
reports of mutant Htt binding more Sp1 and reducing Sp1-
mediated GLT-1 expression in astrocytes may explain this 

Figure 4.  Recovered expression of GLT-1 and glutamate uptake by autophagy stimulator.  The densities of respective protein bands in each group were 
analyzed with Sigma Scan Pro 5, and β-actin was used as a reference.  All the results are shown as mean±SD (n=3).  (A) Astrocytes were harvested after 
being infected for 72 h and treated with rapamycin (0.2 μg/mL) during the last 24 h.  (A) Western blotting showing recovery of GLT-1 expression with 
stimulation of autophagy (cP<0.01, 100Q-Rap vs 100Q).  (B) Astrocytes were harvested after being infected for 72 h and treated with 3-MA during the 
last 24 h.  Western blotting analysis showed decreased expression of GLT-1 with 3-MA treatment .  fP<0.01, 100Q-3-MA vs (con-3-MA, null-3-MA, 18Q-3-
MA); cP<0.01, 100Q vs (con, null, 18Q).  (C) Glutamate uptake was recovered by astrocytes expressing mutant Htt after treatment with rapamycin but 
not with 3-MA.  Astrocytes were harvested after expression of Htt-552 for 72 h and treated with rapamycin (0.2 µg/mL) or 3-MA (10 mmol/L) for the last 
24 h, followed with incubation with [3H]glutamate for 15 min as described in the methods section.  fP<0.01, 100Q-3-MA vs (con-3-MA, null-3-MA, 18Q-3-
MA); cP<0.01, 100Q vs (con, null, 18Q).
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phenomenon[10].  
Autophagy is thought to be involved in neurodegenera-

tive diseases[26], such as HD[27–29], Parkinson’s disease[30–33], and 
Alzheimer’s disease[34–36].  It is a major degradation pathway 
for long-lived misfolded proteins, such as mutant Htt in HD.  
In this study, we used rapamycin, an enhancer of autophagy, 
to activate autophagy.  Although autophagy could be slightly 
activated by mutant Htt, which might be the normal stress 
reaction of astrocytes, the effect of rapamycin would be 
more powerful.  The present study showed that the expres-
sion and the glutamate uptake function of GLT-1 could be 
resumed after reducing mutant Htt-552 levels by stimulating 
autophagy.  On the basis of our results, we postulated that a 
reduction in mutant Htt levels would increase the availability 
of Sp1 to the GLT-1 promoter and increase GLT-1 transcription 
back to initial levels.  The dysfunction of the glutamate trans-
porter GLT-1 caused by mutant Htt can be returned to normal 
after clearing mutant Htt.  Our results give futher evidence for 
enhancing clearance of mutant Htt by autophagy may protect 
neurons survival by lower excitotoxicity in Huntington’s dis-
ease[37].  
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High-sodium intake aggravates myocardial injuries 
induced by aldosterone via oxidative stress in 
Sprague-Dawley rats

Jing-yi LI1, $, Shao-ling ZHANG1, Meng REN1, Yan-ling WEN2, Li YAN1, Hua CHENG1, *

1Department of Endocrinology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou 510120, China;  2Department of 
Ultrasound, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou 510120, China

Aim: To evaluate the effects of aldosterone with or without high sodium intake on blood pressure, myocardial structure and left ven-
tricular function in rats, and to investigate the mechanisms underlying the effects.
Methods: Eight-week-old male Sprague-Dawley rats were randomly divided into 3 groups: (1) control (CON) group fed a normal sodium 
diet, (2) aldosterone (ALD) group receiving aldosterone infusion and a normal sodium diet, and (3) high sodium plus aldosterone (HS-
ALD) group receiving 1% NaCl diet in conjunction with aldosterone infusion.  Aldosterone was administered through continuously sub-
cutaneous infusion with osmotic minipump at the rate of 0.75 μg/h for 8 weeks.  The myocardium structure was observed using transt-
horacic echocardiography and transmission electron microscopy.  The collagen deposition in left ventricle was evaluated with Masson’s 
trichrome staining.  The expression of IL-18, p22phox, and p47phox proteins was examined using Western blot analysis.
Results: The systolic blood pressure in the ALD and HS-ALD groups was significantly higher than that in the CON group after 2-week 
treatment.  But the blood pressure showed no significant difference between the HS-ALD and ALD groups.  The left ventricular hyper-
trophy, myocardial collagen deposition and oxidative stress were predominantly found in the HS-ALD and ALD group.  Furthermore, the 
breakdown of myocardial structure and oxidative stress were more apparent in the HS-ALD group as compared with those in the ALD 
group.
Conclusion: Long-term infusion of aldosterone results in hypertension and profibrotic cardiovascular responses in rats fed a normal 
sodium diet, which were mediated by oxidative stress.  High-sodium intake could aggravate myocardial injuries induced by aldosterone.

Keywords: sodium intake; aldosterone; blood pressure; myocardial injury; left ventricular hypertrophy; oxidative stress 
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Introduction
A series of recent studies have revealed that patients with 
primary aldosteronism have higher incidence of cardiovas-
cular complications compared with demographically and 
hemodynamically similar essential hypertension patients[1].  
Furthermore, two clinical trials, the randomized aldactone 
evaluation study (RALES)[2] and the eplerenone post-acute 
myocardial infarction heart failure efficacy and survival study 
(EPHESUS)[3], have shown that mineralocorticoid recep-
tor (MR) antagonists reduce mortality in patients with heart 
failure.  

Experimental studies have shown that the combined admin-

istration of aldosterone and high sodium in uninephrecto-
mized rats induces cardiovascular injuries[4, 5].  However, it has 
remained unclear whether the cardiac injury was due to the 
direct action of aldosterone, the sodium loading or uninephre-
ctomy.  The contribution of dietary sodium intake is illustrated 
by the finding that the nitric oxide synthase inhibitor Nω-nitro-
L-arginine methyl ester (L-NAME)/angiotensin II treated 
animals fed a low-salt diet do not develop vascular damage, 
even though plasma aldosterone levels were 10-fold higher 
than those of animals on a high-salt diet, suggesting that blood 
levels of aldosterone alone are insufficient to cause vascular 
injury on a low-salt diet[6].  In modern society, humans could 
easily increase sodium intake via food diversity[7].  Little infor-
mation is available concerning the effect of excess aldosterone 
on cardiac injury of rats on a normal sodium diet.  To clarify 
these issues, we performed experiments to evaluate the effects 
of chronic subcutaneous aldosterone infusion with or without 
the addition of 1% sodium chloride on blood pressure, myo-
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cardial structure and left ventricular (LV) function in normo-
tensive Sprague-Dawley (SD) rats.

Materials and methods
Animals model
This study was approved by the Ethics Committee of Sun Yat-
sen University (Guangzhou, China).  All procedures were 
performed in accordance with “Institutional Guidelines for 
Animal Research of Sun Yat-sen University” and “Guide for 
the Care and Use of Laboratory Animals of National Institutes 
of Health”.  Eight week-old male SD rats with an initial body 
weight of 260–280 g were purchased (Laboratory Animal Cen-
ter of Sun Yat-sen University, Guangzhou, China) and used in 
this study.  The rats were randomly divided into three groups 
(n=8 in each group) and assigned to one of the following pro-
tocols for 8 weeks: vehicle (CON group), excess aldosterone 
and a normal sodium diet (ALD group), or 1% (w/v) NaCl in 
conjunction with excess aldosterone (HS-ALD group).  All of 
the rats were anesthetized, and implanted subcutaneously 
with an osmotic minipump (Alzet model 2004, DURECT Corp, 
Cupertino, CA, USA).  The CON group received a continu-
ously subcutaneous infusion of 5% (v/v) ethanol (vehicle, 
Sigma-Aldrich, St Louis, MO, USA).  The ALD group and the 
HS-ALD group received continuously subcutaneous infu-
sion of aldosterone (0.75 µg/h, Sigma-Aldrich, St Louis, MO, 
USA) dissolved in 5% ethanol.  The mini-osmotic pumps 
were replaced every 4 weeks under anesthesia.  In addition 
to standard rat chow [Na, 0.3% (w/v)], all of the animals had 
free access to tap water (the CON group and the ALD group) 
or 1% NaCl solution (the HS-ALD group).  The animals were 
maintained in an environment with a constant temperature 
and 12 h light-dark cycles.  Systolic blood pressure (SBP) was 
measured in conscious rats by the tail-cuff method (BP-98A; 
Softron Co, Tokyo, Japan) before treatment and at 1-week 
interval thereafter.  

Echocardiographic assessment
Transthoracic echocardiographic studies were performed at 
week 8 using an echocardiographic system equipped with 
13-MHz echocardiographic probe (Technos MPX, Biosound 
Esaote, Indianapolis, IN, USA).  A single investigator unaware 
of the make-up of the experimental groups performed the 
task.  The rats were anesthetized, and were held in the dorsal 
decubitus.  M-mode tracings were recorded through the LV 
anterior and posterior walls (AW and PW, respectively) at the 
papillary muscle level to measure the AW thickness at end 
diastole, PW thickness at end diastole, LV end-diastolic dimen-
sion (LVEDD), fractional shortening (FS), and LV ejection frac-
tion (EF).  Pulse-wave Doppler spectra of mitral inflow were 
recorded from the apical 4-chamber view, with the sample 
volume placed near the tips of the mitral leaflets and adjusted 
to the position at which the velocity was maximal and the flow 
pattern laminar.  Mitral inflow measurements of early and late 
filling velocities (Emax and Amax, respectively) were obtained.  
The ratio of Emax to Amax (E/A) was also recorded.

Tissue and blood collection and analysis
The rats were transferred to metabolic cages prior to the com-
pletion of the experiment.  Body weight, food intake and urine 
volume of 24 h were recorded.  The sodium and potassium in 
the urine and plasma were measured.  The rats were then sac-
rificed at week 8.  Blood samples from puncturing heart were 
collected into heparin tubes for the measurement of plasma 
sodium and potassium, into EDTA tubes for the measurement 
of plasma renin activity (PRA, RIA kit, DiaSorin, Saluggia, 
Italy) and into xeransis tubes for the measurement of serum 
aldosterone (RIA kit, Diagnostic System Laboratories, Web-
ster, TX, USA) and 8-isoprostane (ELISA kit, Assay Designs 
900-010, Assay Designs Inc, Ann Arbor, MI, USA).  The hearts 
were divided into right ventricle (RV) and LV plus septum.  
Hearts was rapidly excised and weighed.  The LV mass index 
(LVMI) was determined as the ratio of the LV mass to the 
body weight.  Part of the left ventricle was fixed in glutar-
aldehyde and freshly prepared 4% (w/v) paraformaldehyde 
in phosphate buffer solution for morphometric studies.  The 
remaining left ventricle was frozen in liquid nitrogen for later 
protein extraction.  

Transmission electron microscopy examination for myocardial 
ultrastructure
Heart tissue was thinly sliced and placed in primary electron 
microscopy fixative.  After secondary fixation, the specimens 
were placed on a rocker overnight, embedded, and polymer-
ized at 60 °C for 24 h.  The 85-nm thin sections were stained 
with 5% uranyl acetate and Sato’s Triple lead stain, and then 
viewed by a transmission electron microscopy (TEM) (CM10, 
Philips, Amsterdam, Holland).

Masson’s trichrome-stained method for interstitial and periva
scular collagen
The middle of the LV was excised, fixed in 4% (w/v) paraform-
aldehyde, and embedded in paraffin.  Sections, 5 µm thick-
ness, were made and stained with Masson’s trichrome-stained 
method.  Collagen fibers were shown in blue, and muscles 
were shown in red.  Ten fields in each LV section were 
recorded randomly by photograhy (T-B2.5XA, Nikon, Tokyo, 
Japan).  The collagen volume fraction (CVF) was determined 
by measuring the area of stained blue tissue within a given 
field.  The area stained blue was calculated as a percentage of 
the total area within a field.  CVF examination excluded scars, 
artifacts, perivascular collagen areas and incomplete tissue.  
For each LV section, five cut cross-sectional intramyocardial 
coronary arteries were examined individually.  The area of 
collagen immediately surrounding the blood vessels was cal-
culated, and the perivascular collagen was determined as the 
ratio of the area of collagen surrounding the vessel wall to 
the total area of the vessel (perivascular collagen area/vessel 
luminal area, PVCA/VA).  It was determined by quantitative 
morphometry with Image-pro plus 5.0 (Media Cybernetics, 
Bethesda, MD, USA).  The operator was blinded to the experi-
mental group during the analysis.
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Immunohistochemical staining for ED1 expression
To evaluate the focal inflammatory infiltration of the LV myo-
cardium, we evaluated changes in inflammatory markers.  At 
sites of injury, infiltrating monocytes differentiate into mac-
rophages and express ED-1.  Therefore, an ED-1 monoclonal 
antibody (Millipore Biotechnology, Billerica, MA, working 
dilution 1:50) was used to identify the macrophages.  For 
immunohistochemical staining, sections were labeled with 
primary antibody of mouse monoclonal antibody against ED1 
after antigen retrieval.  The binding of the primary antibodies 
was revealed by horseradish peroxidase-conjugated secondary 
antibodies (DAKO, Carpinteria, CA, USA) and detected with 
diaminobenzidine staining (DAKO, Carpinteria, CA, USA).  
Positive staining appeared as brown.  Controls for immuno-
specificity were included in all experiments, and the primary 
antibody was replaced by phosphate buffered saline.  

Western blot analysis for IL-18, p22phox, and p47phox protein 
expression
NADPH oxidase is a critical source of ROS production within 
the vascular wall and heart[8].  p22phox and p47phox subunits 
seem to be key molecules of NADPH oxidase[9].  In addition, 
IL-18 is a pleiotropic cytokine and several lines of evidence 
support a causal role for it in the pathogenesis of cardiovascu-
lar disease.  Therefore, to demonstrate the relationship among 
IL-18, oxidative stress and aldosterone treatment, we analyzed 
the expression of IL-18, p22phox, and p47phox subunits in the 
LV.  About 100 mg LV was homogenized in 50 mmol/l Tris 
buffer (pH 7.4), 150 mol/L NaCl, 1% (v/v) Triton X-100, 1% 
sodium(w/v) deoxycholate, 0.1% (w/v) SDS and some inhibi-
tors with a homogenizer on the ice and then centrifuged at 
12 000 r/min for 15 min at 4°C.  The resulting supernatants 
were collected and either frozen at -80 °C or used immedi-
ately.  Protein concentrations were determined using the BCA 
method.  Equal amounts of protein (20 µg per sample) were 
analyzed by 12% sodium dodecylsulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and electrotransferred onto poly-
vinylidene difluoride (PVDF) membranes for 1 h at 200 mA 
(Bio-Rad, Hercules, CA).  The membranes were blocked in 5% 
nonfat milk (Santa Cruz Biotechnology, Santa Cruz, CA) for 
2 h at room temperature and then incubated in primary anti-
body against IL-18 (R&D Systems, Minneapolis, MN, working 
dilution 2 µg/mL) p22phox (Santa Cruz Biotechnology, Santa 
Cruz, CA, working dilution 1:500) or p47phox (Millipore Bio-
technology, Billerica, MA, working dilution 1:1000) overnight 
at 4 °C.  The binding of the primary antibodies was revealed 
by horseradish peroxidase-conjugated secondary antibodies 
(Santa Cruz Biotechnology, Santa Cruz, CA).  The proteins of 
the membranes were detected using an enhanced chemilumi-
nescence immunoblotting detection system (Thermo Fisher 
Scientific, Rockford, IL).  The results were quantified by den-
sitometric analysis using Image-Quant software.  Values were 
corrected by the absorbance of the internal control (GAPDH).  

Statistical analysis
Data were expressed as mean±standard deviation.  Statisti-

cal analysis was performed with software (SPSS version 13.0; 
SPSS, Chicago, IL) between two groups using two-tailed Stu-
dent’s t-test for unpaired values, and P<0.05 was considered 
statistically significant.

Results
Physiological characteristics and time-course of SBP in SD rats 
The body weight and food intake did not differ between the 
CON, ALD, and HS-ALD groups.  The serum aldosterone 
level was higher and the PRA was lower in the ALD group 
compared with those in the CON group (aldosterone level 
1664.9±389.9 vs 623.1±80.1 pg/mL, P<0.01; PRA 4.17±0.25 
vs 7.22±0.07 ng·mL-1·h-1, P<0.01).  Urine output and urinary 
potassium excretion were increased, plasma sodium concen-
trations were higher and the plasma potassium levels were 
lower in the ALD group compared with those in the CON 
group.  Serum aldosterone levels were not significantly differ-
ent between the HS-ALD group and the ALD group.  How-
ever, the HS-ALD group exhibited a lower PRA(1.04±0.89 
ng·mL-1·h-1 in the HS-ALD group vs 4.17±0.25 ng·mL-1·h-1 in the 
ALD group, P<0.01), greater urine output, increased urinary 
sodium and potassium excretion, and a lower plasma potas-
sium level (P<0.05) (Table 1).

The time-course of SBP in the rats of the three groups was 
shown in Figure 1.  At the first week of treatment, aldosterone 
infusion had not significantly increased the animals’ blood 
pressure.  However, following 2-week aldosterone treatment 
alone, the SBP of the ALD group was slightly but significantly 
higher than that of the CON group (140±5 vs 125±4 mmHg, 
P<0.01).  Following 8-week aldosterone treatment, the SBP of 
the ALD group was moderately and significantly higher than 
that of the CON group (162±4 vs 127±3 mmHg, P<0.01).  The 
SBP was not significantly different between the ALD group 
and the HS-ALD group.

LV weight, echocardiographic analysis and ultrastructure 
Cardiac structure and function were examined to determine 
the effects of aldosterone infusion with or without the addition 

Figure 1.  Systolic blood pressure of control rats (CON), aldosterone 
alone-infused rats (ALD) and 1% sodium chloride intake in conjunction 
with excess aldosterone (HS-ALD) at 0, 1, 2, 3, 4, 5, 6, 7, and 8 weeks.  
Mean±SD.  n=8.  cP<0.01 vs CON.
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of 1% sodium chloride on the heart.  Cardiac hypertrophy, as 
suggested by LVMI, was observed.  LVMI was significantly 
higher in the ALD group compared with that in the CON 
group (2.36±0.17 vs 2.06±0.10, P<0.05).  The LVMI was also sig-
nificantly higher in the HS-ALD group compared with that in 
the ALD group (2.67±0.24 vs 2.36±0.17, P<0.05) (Table 1).

As shown by echocardiographic analysis in Figure 2A, the 
thickness of both the LVAW and the LVPW (2.30±0.19 mm 
and 2.32±0.21 mm, respectively) in the ALD group was sig-
nificantly greater after 8 weeks compared with that in the 

CON group (1.90±0.25 mm and 1.99±0.16 mm, respectively; 
P<0.05).  The E/A was significantly lower in the ALD group 
compared with that in the CON group (0.94±0.19 vs 1.74±0.18, 
P<0.05).  Furthermore, the LVAW and LVPW thickness were 
significantly greater in the HS-ALD group (2.58±0.17 mm 
and 2.53±0.20 mm, respectively) compared with that in the 
ALD group (P<0.05).  Other echocardiographic parameters, 
including HR (441±34, 435±36, and 428±36 bpm in the CON, 
ALD,and HS-ALD groups, respectively; P>0.05), LVEDD 
(5.52±0.69, 6.10±0.76, and 5.71±1.11 mm in the CON, ALD, 

Figure 2.  Aldosterone infusion with or without additional 1% sodium chloride intake induce left ventricular (LV) hypertrophy by echocardiographic 
analysis and ultrastructural remodeling visible by TEM in rats.  (A) aldosterone infusion with or without additional 1% sodium chloride intake induce 
LV hypertrophy and diastolic dysfunction.  LVAW, LV anterior wall thickness at end diastole; LVPW, LV posterior wall thickness at end diastole; E/A, the 
ratio of mitral inflow measurements of early to late filling velocities; CON, control rats; ALD, excess aldosterone alone-infused rats; HS-ALD, 1% NaCl in 
conjunction with aldosterone in rats.  Mean±SD.  n=8.  bP<0.05 vs CON; eP<0.05 vs ALD.  (B) Representative image from CON demonstrating a line of 
sarcolemmal mitochondria just beneath the sarcomeres (the distance between two Z lines) of the myocardium.  Representative remodeled mitochondria 
in ALD rats.  This image represents marked increase of swollen and denatured mitochondria.  The myocardial ultrastructure was disappeared in some 
spaces and mitochondria of myocardium were dissolved in HS-ALD group.  Original magnifications: ×10 000. 

Table 1.  Physiologic and morphologic characteristics in Sprague-Dawley rats.  Mean±SD.  n=8.  bP<0.05, cP<0.01 vs CON; eP<0.05, fP<0.01 vs ALD.

                                                                                                                CON                                                       ALD                                                 HS-ALD 
 
	 Body weight (g)	 438.7±14.7	   429.2±28.7	   416.7±24.6
	 Food intake (g/100 g BW)	   5.85±0.81	     5.67±0.34	     5.89±0.84
	 Urinary volume (mL/100 g BW)	     2.8±0.8	        5.6±1.4c	     12.3±1.5f

	 Urinary sodium (mmol/24 h)	   1.06±0.42	     1.39±0.41	     6.80±1.15f

	 Urinary potassium (mmol/24 h)	   1.48±0.37	      2.24±0.46b	     2.98±0.58e

	 Plasma sodium (mmol/L)	 141.5±2.4	   148.7±1.1b	   149.5±0.8 
	 Plasma potassium (mmol/L)	     4.3±0.2	        3.1±0.3b	       2.5±0.1e

	 Serum aldosterone (pg/mL)	 623.1±80.1	 1664.9±389.9c	 1474.3±452.4
	 PRA (ng·mL-1·h-1)	   7.22±0.07	      4.17±0.25c	     1.04±0.89f

	 LVMI (mg/g)	   2.06±0.10	     2.36±0.17b	     2.67±0.24e 

CON, control rats; ALD, aldosterone-infused rats; HS-ALD, 1% NaCl in conjunction with aldosterone in rats.  BW, body weight; PRA, plasma renin activity; 
LVMI, left ventricular mass index. 
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and HS-ALD groups, respectively; P>0.05), FS (45.4±3.9, 
54.1%±5.2%, and 45.8%±3.4% in the CON, ALD, and HS-
ALD groups, respectively; P>0.05), and EF (81.8%±3.6%, 
87.9%±6.1%, and 82.3%±3.2% in the CON, ALD, and HS-ALD 
groups, respectively; P>0.05) were not significantly changed 
by aldosterone infusion with or without the addition of 1% 
sodium chloride. 

To further evaluate the changes in cardiac morphology, the 
cardiac ultrastructure was observed using TEM.  TEM images 
of the rat heart following aldosterone infusion with or without 
the addition of 1% sodium chloride revealed striking changes 
in the mitochondria and myofilaments.  The myofilaments 
were sparser, and there was a marked increase in swollen and 
denatured mitochondria in the ALD group.  Moreover, the 
myocardial ultrastructure was not visible in some spaces and 
mitochondria were seriously damaged in the HS-ALD group 
(Figure 2B).

LV collagen deposition
Cardiac fibrosis in rats following aldosterone infusion with 
or without the addition of 1% sodium chloride was shown in 
Figure 3.  The CVF and PVCA/VA were higher in the ALD 
group (3.61%±0.63% and 0.57±0.062, respectively) than those 
in the CON group (1.44%±0.41% and 0.28±0.01, respectively; 

P<0.01).  CVF was 4.55%±0.52% and PVCA/VA was 0.71±0.04 
in the HS-ALD group.  The CVF was not significantly different 
between the ALD group and the HS-ALD group.  However, 
PVCA/VA was higher in the HS-ALD group compared with 
that in the ALD group (P<0.01).  We found that aldoster-
one infusion alone induced a significant increase in cardiac 
fibrosis, in terms of collagen deposition, in the myocardial 
interstitium (Figure 3A and 3C) and the perivascular space 
of the intramyocardial coronary arteries (Figure 3B and 3D).  
Furthermore, high sodium in conjunction with aldosterone 
induced more obvious myocardial fibrosis, especially in the 
perivascular space of the intramyocardial coronary arteries 
(Figure 3).

LV inflammatory infiltration and oxidative stress 
As shown in Figure 4A, LV inflammatory infiltration was not 
detected in the CON group.  Focal inflammatory infiltration 
in LV characterized by ED-1-positive cells (macrophages) was 
observed in the ALD group.  More obvious inflammatory infil-
tration was detected in the HS-ALD group.

The expression of NADPH oxidase was determined by 
Western blot detection of the subunits p22phox and p47phox.  
In addition, we analyzed the expression of the IL-18 protein 
in three groups.  Our results showed that the expressions of 

Figure 3.  Effects of aldosterone infusion with or without additional 1% sodium chloride intake on cardiac fibrosis.  Representative photomicrographs 
show collagen changes in midmyocardium (A, C) and perivascular space of intramyocardial coronary arteries (B, D) after aldosterone infusion with 
or without additional 1% sodium chloride intake by masson’s trichrome-stained method.  Original magnifications: ×200.  Collagen fibers were shown 
in blue and muscles were shown in red.  Collagen volume fraction was determined by measuring the area of collagen within a given field.  PVCA/ 
VA, perivascular collagen area/vessel luminal area.  CON, control rats; ALD, aldosterone alone-infused rats; HS-ALD, 1% NaCl in conjunction with 
aldosterone in rats.  Mean±SD.  n=8.  cP<0.01 vs CON; fP<0.01 vs ALD.  
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p22phox, p47phox, and IL-18 were up-regulated in the ALD 
group compared with those in the CON group (P<0.05).  Fur-
thermore, p22phox, p47phox, and IL-18 protein expressions in 
the HS-ALD group were up-regulated compared with those in 
the ALD group (P<0.05) (Figure 4B).  

We found that serum 8-isoprostane levels, a marker for 
global oxidative stress, were significantly higher in the 
ALD group than those in the CON group (654.22±92.47 vs 
326.96±79.65 pg/mL, P<0.05).  There was also an increasing 
trend in serum 8-isoprostane levels in the HS-ALD group 
compared with those in the ALD group.  However, serum 
8-isoprostane levels were not significantly different between 
the HS-ALD group and the ALD group (797.50±111.33 pg/mL 
in the HS-ALD group, P>0.05) (Figure 4C).

Discussion
Aldosterone on a normal sodium diet could have a pivotal 
effect on cardiac injury.  Some investigators have shown that 
aldosterone excess in the presence of salt loading and unine-
phrectomy is associated with cardiovascular remodeling[4, 5].  It 
has also been reported that other cofactors, such as low nitric 
oxide bioavailability, hypertension, or congestive heart failure 
must be present together with a high-sodium intake for dam-
age to occur[6].  Due to the influence of high-sodium intake or 
other factors on myocardial injury, the actual effects of aldos-
terone on cardiac injury have remained poorly understood.  

Our study showed that chronic subcutaneous aldosterone 
infusion of 8 weeks’ duration in the absence of sodium loading 
induced hypertension and LV hypertrophy, which was accom-
panied by an inflammatory response and collagen deposition 
in the myocardium.  

Regarding the echocardiography observations, the present 
study showed that E/A was significantly lower in animals 
infused with aldosterone for 8 weeks compared with that in 
the CON group, indicating the impairment of diastolic func-
tion in the ALD group.  Yoshida et al demonstrated that rats 
infused with aldosterone on a normal sodium diet for only 
2 weeks showed cardiac hypertrophy.  However, FS and EF 
were not significantly altered[10].  Unfortunately, they did not 
evaluate whether the LV diastolic function was altered.  With 
prolonged infusion of aldosterone to 8 weeks, we observed 
that LVEDD, FS, and EF were not different compared with 
the control.  Together, these studies indicated that more pro-
longed aldosterone exposure alone might lead to LV diastolic 
dysfunction and not influence LV systolic function.  The pos-
sibility was also raised that diastolic dysfunction might occur 
earlier than systolic dysfunction in that condition.

Additional features of the myocardium following aldoster-
one alone treatment included cardiac interstitial fibrosis and 
perivascular fibrosis of the intramyocardial coronary arteries 
in ALD rats.  LV hypertrophy was also observed following 
aldosterone infusion, as shown by increased LVMI and greater 

Figure 4.  (A) Macrophage infiltration was presented at sites of myocardium induced by aldosterone infusion with or without additional 1% sodium 
chloride intake.  Positive staining appeared as brown.  Appearance of focal inflammatory infiltration in LV has been observed in ALD group.  The focal 
inflammatory lesions were enlarged in HS-ALD group (the macrophage infiltration had been labeled).  Original magnifications: ×100.  (B) Effects of 
aldosterone infusion with or without additional 1% sodium chloride intake on the parameters about oxidative stress and IL-18 in LV myocardium.  
(C) Effects of aldosterone infusion with or without additional 1% sodium chloride intake on the serum 8-isoprostane levels.  CON, control rats; ALD, 
aldosterone alone-infused rats; HS-ALD, 1% NaCl in conjunction with aldosterone in rats.  Mean±SD.  n=8.  bP<0.05 vs CON; eP<0.05 vs ALD.
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LVAW and LVPW thickness.  Moreover, the marked increase 
in swollen and denatured mitochondria observed by TEM 
in the ALD group pointed to remodeling of the myocardial 
structure and insufficient myocardium energy.  Previous work 
has shown that diffuse accumulation of fibrosis tissue in the 
cardiac spaces contributes to increase ventricular diastolic 
stiffness and leads to, in severe cases, electrical conduction 
defects[11].  The resultant heterogeneity in myocardial struc-
ture, created by a disproportionate accumulation of collagen, 
may serve to explain the important clinical observations that 
patients with high-renin essential hypertension have a greater 
incidence of adverse cardiovascular events and impaired ven-
tricular function, respectively[12, 13].

High-sodium intake could aggravate myocardial injuries 
induced by aldosterone, which was partly independent of 
blood pressure.  The 8% sodium chloride alone or 8% sodium 
chloride administration in conjunction with exogenous aldos-
terone is usually used in experimental studies to detect the 
effects of high-sodium intake on the cardiac structure.  In such 
situations, sodium intake levels are twenty times higher than 
that on a 0.3% normal sodium diet in rats.  In our study uri-
nary sodium of 24 h in the HS-ALD group was about six times 
higher than that in the CON group and the ALD group.  We 
showed that SBP was not significantly different between the 
ALD group and the HS-ALD group.  However, LV hypertro-
phy was more predominant in the HS-ALD group compared 
with that in the ALD group and was accompanied by signifi-
cantly increased collagen deposition in the perivascular space 
of the coronary arteries and the breakdown of myocardial 
ultrastructure.  This result suggested that moderate elevation 
of sodium chloride intake could aggravate myocardial inju-
ries induced by aldosterone, which was partly independent 
of blood pressure.  Regarding the synergistic action between 
aldosterone and sodium, fibroblast collagen synthesis may be 
involved in the regulation by aldosterone of Na+/K+-ATPase, 
and the expression of Na+/K+-ATPase is increased only in the 
presence of salt[14].  Moreover, a previous clinical study indi-
cated that the association of serum aldosterone with both an 
increase in blood pressure and the later development of hyper-
tension was seen only in the persons whose urine sodium 
index was at or above the median, but not in those whose 
urine sodium excretion was below the median[15].  Such an 
interaction between aldosterone and sodium is also supported 
by the observations made in Yanomamo Indians who consume 
a very low-salt diet.  They exhibit markedly elevated serum 
aldosterone levels but little or no blood-pressure elevation[16].  
In modern society, humans could easily increase sodium 
intake via food diversity.  Therefore, lowering sodium intake 
can compensate for the risk of cardiac and vascular injury by 
aldosterone, especially in essential hypertension, primary and 
secondary aldosteronism.

The myocardial injury may be attributable to significantly 
up-regulated oxidative stress induced by aldosterone and high 
sodium intake.  It is now established that the specificity of MR 
occupancy by aldosteone in epithelial tissues is determined by 
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)[17, 18], 

but the amount of 11β-HSD2 in non-epithelial tissues, such as 
heart, is at a negligible level[19].  MR in non-epithelial tissues 
should be exclusively occupied by glucocorticoids with very 
limited accessible aldosterone.  The glucocorticoid-MR com-
plex is inactive under the steady-state condition.  Funder et al 
recently proposed a novel and intriguing hypothesis for MR 
activation in non-epithelial tissues, suggesting that the inac-
tive glucocorticoid-MR may be activated by the generation of 
ROS[20].  With the possible positive feedback system triggered 
by inflammation and increased oxidative stress, further acti-
vation of the glucocorticoid-MR complex could occur, thus 
accounting for the vicious cycle of the aldosterone-induced 
cardiovascular injury.  This postulated mechanism could well 
explain our study results, with high-sodium intake poten-
tially aggravating myocardial injuries induced by aldosterone 
through up-regulated oxidative stress.  The hypothesis has 
been supported by previous studies, which showed that the 
development of hypertension and the regression of cardiovas-
cular remodeling were attenuated in mineralocorticoid treated 
animals after the treatment of antioxidant drugs, such as the 
superoxide dismutase mimetic Tempol[21, 22], the NADPH oxi-
dase inhibitor apocynin[23, 24] or N-acetylcysteine[5].  

Increased oxidative stress might also trigger and deteriorate 
inflammation.  In the present study, noticeable inflammatory 
injury and significantly up-regulated IL-18 protein expres-
sion were observed in the ALD group compared with that 
in controls.  Furthermore, the inflammatory injury was more 
serious and the IL-18 protein expression was up-regulated in 
the HS-ALD group compared with that in the ALD group.  
Previous experimental studies have indicated that aldoster-
one infusion alone for a shorter time may exclusively result 
in the infiltration of inflammation cells via oxidative stress[10].  
Both of inflammation and increased oxidative stress may lead 
to the further activation of the glucocorticoid-MR complex, 
thus worsening myocardial inflammatory injuries induced by 
aldosterone[21].  It may be possible that aldosterone-induced 
oxidative stress stimulated a series of pro-inflammatory genes 
expression, such as IL-18, via a redox-sensitive mechanism, 
thereby leading to initiation of the cardiovascular inflamma-
tory phenotype.  Moreover, inflammation and, in particular, 
generation of free radicals may contribute to the activation 
of the fibrotic process and hypertrophy[25].  Cardiac fibrosis 
could be the reparative response to the inflammatory injury, 
although direct effects of aldosterone on fibrosis are pos-
sible[26, 27].  Furthermore, previous studies have indicated that 
adult cardiomyocytes express IL-18 and its receptors, and that 
proinflammatory cytokines and oxidative stress regulate their 
expression via activation of NF-kB[28–31].  In the present study, 
we found that IL-18, which was a predictor of cardiovascu-
lar events, might be involved in the cardiovascular injuries 
induced by aldosterone.  

In summary, the present work provided evidence that long-
term infusion of aldosterone on a normal sodium diet could 
result in hypertension, persistent inflammatory infiltration, 
cardiac fibrosis, LV hypertrophy and LV diastolic dysfunction.  
Moderate high-sodium intake could aggravate myocardial 
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injuries induced by aldosterone.  These synergistic effects of 
sodium and aldosterone were mediated by oxidative stress 
via NADPH oxidase and IL-18.  Our data could also under-
score the potential benefits of lower sodium action in cardiac 
protection related to aldosterone.  Further studies are needed 
to elucidate the detailed nature of the relationship between 
inflammation, oxidative stress, and activation of glucocorti-
coid/aldosterone-MR in the development of cardiovascular 
diseases.
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Aim: Current chemotherapy for esophageal cancer is conducted on the basis of empirical information from clinical trials, which fails to 
take into account the known heterogeneity of chemosensitivity between patients.  This study was aimed to demonstrate the degree of 
heterogeneity of chemosensitivity in esophageal cancers.  
Methods: A total of 42 esophageal cancer specimens were collected.  The heterogeneity of chemosensitivity in esophageal cancer 
specimens was examined using an ex vivo ATP-tumor chemosensitivity assay (ATP-TCA).   
Results: Thirty eight specimens produced evaluable results (90.5%).  The most active single agent tested was nedaplatin, to which 
28.9% of samples were sensitive.  Combinations of chemotherapy agents exhibited much higher sensitivity: cisplatin+paclitaxel was 
sensitive in 16 of 38 (42.1%) of samples, while nedaplatin+paclitaxel was more effective, which was sensitive in 20 of 38 cases 
(52.6%).   
Conclusion: There was a marked heterogeneity of chemosensitivity in esophageal cancer.  Chemosensitivity testing may provide a 
practical method for testing new regimens before clinical trials in esophageal cancer patients.
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Introduction
Esophageal cancer is a highly malignant gastrointestinal 
cancer that readily progresses to widespread metastasis to 
lymph nodes and easily infiltrates the trachea and great ves-
sels[1].  Better treatment outcomes of esophageal cancer have 
been obtained by improved diagnostic technologies such 
as dye-spraying endoscopy[2], surgical skills such as three-
field lymphadenectomy[3], and perioperative management[4].  

Because esophageal cancer is generally more sensitive to anti-
cancer drugs than other gastrointestinal carcinomas, various 
multidisciplinary treatments have been attempted and chemo-
radiation has long been established as a standard treatment 
for esophageal cancer because it is highly effective and can 
be performed relatively safely[5].  However, as in the case of 
surgery, chemoradiation mainly provides localized treatment, 
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and treatment outcomes of cases for which radical surgery is 
impossible, such as cancer infiltrating into other organs, dis-
tant lymph node metastasis and metastasis to other organs, 
are still poor.  In these cases, systemic chemotherapy is usually 
adopted, and many regimens have been used[5, 6].

Tumors show heterogeneity of genotype and phenotype, 
and such heterogeneity in esophageal cancer certainly affected 
response to cytotoxic agents[7-9].  Predictive assays based on 
thymidylate synthase levels show some promise, but cellular 
assays have largely been ignored due to low evaluability rates 
and technical problems which is common in tumor-derived 
tissue[10].  However, recent technical developments have 
produced assays, such as the ATP-tumor chemosensitivity 
assay (ATP-TCA), which has high availability rates with solid 
tumors and produces interpretable results in more than 90% of 
tumors tested[11, 12].  The results correlated well with outcome 
in patients with a sensitivity of 95% for predicting those who 
responded to primary treatment of stage III ovarian cancer[13].  

The use of this assay was shown to double progression-free 
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survival and overall survival in a case-control intervention 
study in recurrent ovarian carcinoma[14].

We performed this study to determine the degree of hetero-
geneity of chemosensitivity in esophageal cancer as a prelude 
to studies of the molecular basis of resistance in tumor-derived 
cells and the potential use of this assay to guide therapy.  We 
also wanted to solve the ATP-TCA technical problems, par-
ticularly the use of tumor material from different origins.

Materials and methods
All procedures complied with the ethical guidelines for the 
collect of human tissue specimens and use of laboratory study 
at Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, 
China.

Tumor specimens
A total of 42 specimens were studied and 38 of these produced 
evaluable results (90.5%).  Thirty-five samples were from 
patients undergoing resection of their primary esophageal 
cancer (of all pathological stages) and three were pleural aspi-
rates in patients with metastatic disease.  The median age of 
the patients was 57 years (range 30–82).  Local ethics commit-
tee approval was obtained and informed consent gained from 
all patients.  Biopsies were taken from the luminal surface of 
resection specimens by a pathologist or surgeon, ensuring his-
topathological diagnosis and staging were not compromised.

ATP-tumor chemosensitivity assay (ATP-TCA)
Chemosensitivity was assessed in primary esophageal cancer 
tumor tissue samples using the ATP-TCA (TCA-100; DCS 
Innovative Diagnostik Systeme, Hamburg, Germany), which 
has been described in detail[15].  Briefly, surgical biopsies 
(1–2 cm3) were obtained during primary surgery.  Tumor cells 
were isolated by mechanical and enzymatic dissociation (TDE 
DCS) (Innovative Diagnostik Systeme; or collagenase, Sigma, 
St Louis, MO, USA).  Approximately 2×104 cells were then 
seeded into each well of a 96-well polypropylene microplate.  
Test drug concentrations were used in triplicate at six different 
doses of 6.25%, 12.5%, 25%, 50%, 100%, and 200% of the test 
drug concentration (TDC).  The TDCs were based on phar-
macokinetic data for standard doses of the agents, adjusted to 
give good discrimination (Table 1).  Two rows on each plate 
were reserved for controls, one row of maximum inhibitor (MI 

DCS) and one row of CAM only (MO-no drug control).  Fol-
lowing preparation of the drug dilutions, 100 μL of the cell 
suspension was added to each well of the plate.  The plate was 
incubated for 5–6 d at 37 °C with high humidity and 5% CO2.  
The cells were observed every 24 h microscopically to check 
for overgrowth or infection.  At the end of the incubation 
period the cells were lysed by the addition of 50 μL of tumour 
cell extraction reagent (TCER DCS), and the ATP content of 
each well was assessed by the addition of 50 μL luciferin-
luciferase reagent (DCS) to 50 μL of extracted cells.  Lumines-
cence measurements were made using Orion II luminometer 
(Berthold Diagnostic Systems).  

Data analysis
Data was transferred directly from the luminometer to a 
spreadsheet (Excel 2003; Microsoft).  A TCA index, or index 
of sensitivity, calculated as [600-sum (inhibition 6.25%-
200%)] has been shown to allow simple comparison of results 
between drugs and tumors.  In addition, IC50 and IC90 were 
determined by linear interpolation.  Four categories of ex vivo 
sensitivity were defined as: (a) strong sensitivity, IC90≤100% 
TDC and IC50<25% TDC; (b) partial sensitivity, IC90>100% 
TDC and IC50≤25% TDC; (c) weak sensitivity, IC90≤100% TDC 
and IC50>25% TDC; and (d) resistance, IC90>100% TDC and 
IC50>25% TDC.

All experiments were performed three times and judged 
acceptable if the results showed a coefficient of variation 
below 25%.  The results of each experiment were entered 
into an access database for further analysis and compared 
with existing data for tumor-derived cells using descriptive 
statistics.  Further statistical tests (SPSS Software, IL, USA) 
were performed when direct comparisons were necessary: the 
Wilcoxon rank-sum test was used to compare paired series.  
Combination effects were assessed using Chou’s method[16], 
as previously used with the ATP-TCA[17].  The combina-
tion index (CI) was determined at 90% cell death, and was 
defined as follows: CIA+B=[(DA/A+B)/DA]+[(DB/A+B)/DB]+[alpha 
(DA/A+B×DB/A+B)/DADB], where CIA+B=CI for a fixed effect 
(F=90%) for the combination of cytotoxic A and cytotoxic 
B; DA/A+B or DB/A+B=concentration of cytotoxic A or B in the 
combination A+B; DA or DB=concentration of cytotoxic A or B 
alone; alpha=parameter with value 0 when A and B are mutu-
ally exclusive, and 1 when A and B are mutually nonexclusive.  
The combination index indicated: synergism<0.8; additiv-
ity>0.8 and <1.2; antagonism>1.2; slight synergistic and addi-
tive cytotoxic activity for value of 0.8 and 1.2, respectively.

Results
For comparison between drugs and tumors, an Index <300, 
representing an average 50% inhibition across all concen-
trations tested was used indicate sensitivity, as previously 
published[12, 18].  The results showed considerable heterogene-
ity of chemosensitivity to single agents and drug combina-
tions between the tumors tested (Figure 1 and Table 2).  The 
most active single agent tested was NDP, to which 28.95% 
of samples were sensitive (P<0.05).  Both drug combinations 

Table 1.  Drugs tested and their 100% TDC as used in the ex vivo ATP-TCA.   

            Drug/combination	                              100% TDC (μg/mL)  
 
	 Paclitaxel (PTX)	 13.8
	 Adriamycin (ADM)	    1
	 5-Fluorouracil (5-Fu)	  25
	 Nedaplatin (NDP)	  18
	 Cisplatin (DDP)	    6.3
	 DDP+PTX	 6.3±13.8
	 NDP+PTX	  18±13.8
	 DDP+5-Fu	 6.3±25
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achieved greater growth inhibition than drugs used alone 
(P<0.05), except for NDP.  The correlation analysis was done 

using Pearson’s rank correlation test among all 5 drugs tested.  
Results showed that there exist positive correlation among all 
5 drugs tested (Figure 2 and Table 3).

Some tumors responded well to one drug or combina-
tion, while others showed no response to this and instead 
responded to an alternative regimen.  For a limited panel of 
drugs and combinations, four cases were sensitive to only on 
drug/combination and resistant to all the others tested.  Of 
these four, one was sensitive only to NDP, one to PTX, and 
two to NDP+PTX.  One case was resistant to all drugs/combi-
nations tested (2.6%).  

Despite appearing sensitive to certain drugs using the Index 
threshold of <300, many tumors did not reach strong sensi-
tivity level.  Table 4 showed the patterns of chemosensitivity 
for different agents on tumors.  Again, the most active single 
agent was NDP.  NDP alone showed a strong sensitivity in 
11 of 38 tumor samples tested, but ADM was 4 of 38 (29.0% 
vs 10.5%, P<0.01).  Combinations of agents also showed more 

Figure 1.  Frequency histograms show 
heterogeneity of the sensitivity index for 
each single agent and combination. 

Table 2.  Summary of sensitivity data (using an arbitrary threshold of 
sensitivity defined as a TCA index <300 for six concentrations use).   

     Drug/                                   No                         No in                 Sensitivity
combination                        sensitive	      ATP-TCA             assessed (%)
 
	 PTX	 6	 38	 15.8
	 ADM	 4	 38	 10.5
	 5-Fu	 5	 38	 13.2
	 NDP	 11	 38	 29.0
	 DDP	 7	 38	 18.4
	 DDP+PTX	 16	 38	 42.1
	 NDP+PTX	 20	 38	 52.6
	 DDP+5-Fu	 9	 38	 23.7
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strong sensitivity cases.  The DDP+PTX demonstrated a strong 
sensitivity in 16 of 38 of samples.  The NDP+PTX was more 
effective, with strong sensitivity in 20 of 38 cases tested (42.1% 
vs 52.6%, P<0.05).

Figure 3 showed the results of testing DDP and PTX, alone 
and in combination, on esophageal cancer cells.  DDP dem-

onstrated partial sensitivity on its own, but when combined 
with the relatively resistance PTX the sensitivity was greatly 
improved.  DDP and PTX combination had synergistic effect 
(IC90=0.75), while NDP and PTX had additive effect (IC90=0.93) 
(Figure 4).

Discussion
It would be of major importance to determine appropriate 
drugs to be used for treatment in patients with advanced can-

Figure 2.  The ATP-TCA results of the 38 tumor specimens with five drugs 
were classified into 6 groups by different index values, and were marked 
with turquoise, cyan, dark cyan, dark grey, grey, and light grey which 
represent <100, 100–200, 200–300, 300–400, 400–500, and >500, 
respectively.

Figure 3.  Results for DDP+PTX in one tumor, showing little activity of the 
DDP, but a synergistic increase in activity of the combination compared 
with PTX.

Table 3.  The correlation analysis using Pearson’s rank correlation test among all drugs tested.  

                                                                                                             Pearson correlation
 	                                                                            DDP	                      ADM	                         5-Fu	                          NDP	                       PTX
 
	 DDP	 Pearson correlation	 1 	 0.569 	 0.494 	 0.745 	 0.862 
		  P (2-tailed)		  0.000 	 0.002 	 0.000 	 0.000 
	 ADM	 Pearson correlation	 0.569 	 1 	 0.871 	 0.889 	 0.712 
		  P (2-tailed)	 0.000 		  0.000 	 0.000 	 0.000 
	 5-Fu	 Pearson correlation	 0.494 	 0.871 	 1 	 0.793 	 0.632 
		  P (2-tailed)	 0.002 	 0.000 		  0.000 	 0.000 
	 NDP	 Pearson correlation	 0.745 	 0.889 	 0.793 	 1 	 0.858 
		  P (2-tailed)	 0.000 	 0.000 	 0.000 		  0.000 
	 PTX	 Pearson correlation	 0.862 	 0.712 	 0.632 	 0.858 	 1 
		  P (2-tailed)	 0.000 	 0.000 	 0.000 	 0.000 	

Table 4.  Patterns of chemosensitivity exhibited by esophageal cancer 
specimens.  

      Drug/                        Strong              Partial               Weak            Resis-
  combination              sensitivity         sensitivity         sensitivity       tance
 
	 PTX	 9	 5	 7	 17
	 ADM	 5	 5	 3	 25
	 5-Fu	 7	 11	 3	 17
	 NDP	 9	 8	 3	 18
	 DDP	 8	 11	 3	 16
	 DDP+PTX	 13	 11	 3	 11
	 NDP+PTX	 18	 11	 1	 8
	 DDP+5-Fu	 10	 13	 4	 11  
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among all five drugs tested, suggesting the tumors are cross-
resistant to all drugs.  These also reflect the clinical reality that 
tumors are frequently rather cross-resistant.

Advanced esophageal cancer with widespread metastasis 
to lymph nodes or other organs is difficult to treat and has an 
extremely poor prognosis.  In China, the most common che-
motherapy single agent used in esophageal cancer was plati-
num compounds.  The efficacy of platinum agents against can-
cer cells could be related to inhibition of DNA synthesis or to 
saturation of the cellular capacity to repair platinum adducts 
of DNA.  Paclitaxel binds to tubulin and inhibits the disassem-
bly of microtubules, thereby resulting in the inhibition of cell 
division[32].  Clinical studies demonstrated a range of response 
rates to this regimen, most of them between 25% and 50%.  We 
tested the combinations containing NDP, which was effective 
to 29% tumors as a single agent.  The combined treatment with 
NDP and PTX was the most effective group.  52.6% of samples 
were sensitive to adriamycin+paclitaxel using the Index <300 
threshold and this was the most sensitive regimen (47.3%).  
The adriamycin was commonly used and its clinical activity 
against numerous solid malignancies make it an attractive 
drug for use in combination therapy[33].

In conclusion, there was a marked heterogeneity of chemo-
sensitivity in esophageal cancer.  Chemosensitivity testing 
might provide a practical method of testing new regimens 
before clinical trials in esophageal cancer patients.  We believe 
that the ability to predict those patients who will respond well 
to chemotherapy will be a major step forward.
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Introduction
Coumarins are natural products widely abundant in natu-
ral sources, especially green plants.  Coumarins have mul-
tiple biological activities[1], including anticoagulant[2–4], 
anti-inflammatory[5, 6], antimicrobial[7–12], antioxidant[13–16], anti-
allergic[17–20], anti-HIV[21], anticancer[22–28] and antiviral activi-
ties[29–32].  It has been suggested that alterations in the chemical 
structure of coumarins could change their cytotoxic properties.  
It has also been known for many years that coumarins have 
significant therapeutic potential[33–35] and are present in many 
natural therapeutic products[36–40].  Due to their attractive prop-
erties and potential clinical utility, we synthesized a series of 
coumarin analogues and evaluated their anticancer proper-
ties to find a novel coumarin analogue with good anticancer 

activity.  
In the present study, we show that 6-chloro-4-(methoxy

phenyl) coumarin (CMC) has the best anticancer activity 
among 36 different coumarin analogues.  CMC had broad-
spectrum anticancer activities in 9 cancer cell lines derived 
from 6 different tissues.  Further analysis showed that CMC 
caused G2-M arrest and apoptosis in HeLa cells via microtu-
bule depolymerization.

Materials and methods
Cell culture 
The colon cancer cell line LS-174t was cultured in MEM 
medium with 10% fetal bovine serum (Hyclone, Thermo 
Scientific, Logan, UT, USA).  The colon cancer cell line HCT-
116 was cultured in McCoy’s 5A modified medium with 10% 
fetal bovine serum.  The colon cancer cell lines Colo-205 and 
HCT-15, the breast cancer cell line MDA-MB-435S, and the 
leukemia cell line HL-60 were cultured in RPMI-1640 with 
10% fetal bovine serum.  The liver cancer cell line HepG2, the  
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epidermoid cancer cell line A431 and the cervical cancer cell 
line HeLa were cultured in DMEM (high glucose) with 10% 
fetal bovine serum.  All cell lines mentioned above were pur-
chased from the Cell Bank (Chinese Academy of Sciences, 
Shanghai, China).  A human fetal lung fibroblast cell line (WI-
38) was kindly provided by Dr Mei-yu GENG (Shanghai Insti-
tute of Materia Medica) and was cultured in MEM with 10% 
fetal bovine serum (Gibco, Invitrogen, USA).  All cells were 
kept in a humidified atmosphere of 5% CO2 and 95% air at 
37 °C.  

Reagents 
Coumarin analogues were synthesized and provided by Prof  
Jie Wu from Fudan University.  The analogues were dissolved 
in 100% DMSO with a 5 g/L stock solution.  The working 
solution was prepared by dilution of the stock solution with 
the culture medium.

An anti-phospho-Ser/Thr-Pro MPM-2 (Cat #05-368) anti-
body was purchased from Millipore Corporation (Boston, 
MA, USA).  Anti-CDC25C (Cat #4688) antibody was from Cell 
Signal Technology (Boston, MA, USA).  Peroxidase-affiniPure 
goat anti-rabbit IgG (Code: 112-035-175) and goat anti-mouse 
IgG (Code: 115-035-174) were purchased from Jackson Immu-
noResearch Laboratories, Inc  (Baltimore, MD, USA).  Hoechst 
33342 dye (Cat #H3570) and Alexa Fluor 488 dye-labeled 
donkey anti-mouse IgG (Cat #A-21202) were purchased from 
Invitrogen Corporation (Carlsbad, CA, USA).

Cell proliferation assay 
The inhibitory effects of synthesized coumarin analogues on 
the growth of cancer cell lines were evaluated using the MTT 
viability assay as described previously[41].  Briefly, cells (3000 
cells/well) were seeded onto plastic 96-well cell culture plates 
and cultured at 37 °C.  After 24 h, compounds with doses 
ranging from 10 μmol/L to 10 nmol/L at a dilution ratio of 
1:4 were added, and the cells were further incubated for 72 h.  
MTT was then added to each well at a final concentration of 
1 g/L.  After a 3 h incubation at 37 °C, the medium was gently 
discarded and DMSO (100 μL/well) was added to dissolve the 
formazan product.  The optical density was determined at 550 
nm/690 nm using a VersaMax Microplate Reader (Molecular 
Devices).  Experiments were performed in four replicates.  
IC50 values were derived from a nonlinear regression model 
(curvefit) based on a sigmoidal dose response curve (variable 
slope) and computed using Graphpad Software (Graphpad 
Prism version 5.02).  Data were expressed as the mean±SEM.

Cell cycle analysis 
As described previously[42], both synchronized and asynchro-
nized HeLa cells were treated with either DMSO (negative 
control), nocodazole (positive control), or CMC at 37 °C for 
the indicated time.  The cells were then digested with 0.5 g/L 
trypsin, collected, washed twice with cold 1×PBS and fixed 
in 1 mL of 70% ethanol at 4 °C overnight.  The next day, cells 
were washed twice with cold 1×PBS and incubated with 20 
μg/mL RNase at 37 °C for 15 min.  Cells were then stained 

with 20 mg/L PI for 30 min at 4 °C.  Cell cycle distribution was 
determined using a BD FACSCalibur Flow Cytometer.

Cell synchronization 
HeLa cells were synchronized using a double thymidine block 
as described previously[43].  Briefly, 1.5×105 cells were seeded 
in each well of a 6-well cell culture plate.  The next day, a dou-
ble thymidine block was performed with an initial block for 
17 h and a 10 h release and was followed by a second block for 
16 h.  The final concentration of thymidine used in the block 
medium was 2 mmol/L.  Following release from the second 
block, synchronized cells were treated with either DMSO (neg-
ative control), nocodazole (positive control) or CMC for the 
indicated times, and samples were collected for flow cytom-
etry analysis.  

Western analysis of G2-M regulatory proteins 
HeLa cells were treated with varying doses of CMC for 
24 h.  Cells were then lysed with cell lysis buffer [1% NP-40, 
150 mmol/L NaCl, 20 mmol/L Tris-HCl, 1 mmol/L EDTA, 
1 mmol/L EGTA and complete protease inhibitor cocktail 
(Cat #11697498001, Roche)].  Equal amounts of protein were 
resolved by SDS-polyacrylamide gel electrophoresis, trans-
ferred onto Hybond-C nitrocellulose membranes (GE Life Sci-
ences) and immunoblotted as described previously[44].  Immu-
noreactive bands were detected with the enhanced chemilumi-
nescence (ECL) system (GE Life Sciences).

Immunocytochemistry assay 
Microtubules were observed using an immunocytochemistry 
assay[45, 46].  Briefly, HeLa cells were grown on glass coverslips 
for 24 h and then treated with varying doses of CMC for 8 h.  
Cells were then fixed with cold methanol (4 °C) for 5 min, 
blocked for 1 h with 5% BSA in 1×PBS at room temperature 
and incubated with monoclonal β-tubulin antibody (T-4026; 
Sigma, St Louis, MO, USA) overnight at 4 °C.  Cells were then 
washed three times with 1×PBS and incubated with Alexa 
Fluor 488-labeled donkey anti-mouse IgG (Invitrogen) at room 
temperature for 1 h.  The coverslips were washed, stained with 
5 mg/L Hoechst 33342 dye (Molecular Probes, Invitrogen) and 
photographed using an Olympus confocal microscope (Olym-
pus, Tokyo, Japan).

In vitro tubulin polymerization assay 
An in vitro fluorescence-based tubulin polymerization assay 
kit (BK011, Cytoskeleton, Inc) was used according to the 
manufacturer’s protocol for monitoring the time-dependent 
polymerization of tubulin to microtubules.  The reaction mix-
ture had a final volume of 50 μL in PEM buffer (80 mmol/L 
PIPES, 0.5 mmol/L EGTA, 2 mmol/L MgCl2, pH 6.9) and 
contained 2 g/L bovine brain tubulin, 10 μmol/L fluorescent 
reporter and 1 mmol/L GTP in either the presence or absence 
of test compounds at 37 °C.  Tubulin polymerization was fol-
lowed by monitoring fluorescence enhancement due to the 
incorporation of a fluorescent reporter into microtubules as 
polymerization proceeded.  Fluorescence emission at 450 nm 



409

www.chinaphar.com
Ma YM et al

Acta Pharmacologica Sinica

npg

(excitation wavelength of 360 nm) was measured for 1 h at 
0.5 min intervals in a FlexStation 3 Microplate Reader (Molec-
ular Devices).  Nocodazole was used as positive control.  

Apoptosis detection assay 
The quantitative assessment of apoptosis was determined 
using Annexin V-FITC and PI double staining.  Annexin V 
binds to phosphatidylserine (PS) and other negatively charged 
phospholipids, thereby producing fluorescence primarily 
indicative of PS translocation from the inner to the outer cell 
membrane leaflet.  This change reflects aminophospholipid 
translocase activity in apoptotic cells[47].  PI is a nucleic acid 
dye that penetrates the nuclear envelope of necrotic cells 
and was used here as a counterstain to differentiate between 
live, apoptotic, late-stage apoptotic/early stage necrotic and 
necrotic cells.  Briefly, HeLa cells were treated with varying 
doses of either CMC or 1 μmol/L stauporine for the indicated 
times and were then stained with an Annexin V-FITC/PI dou-
ble staining kit (KGA108, Kaiji Bio Co, Nanjing, China).  After 
washing twice with cold 1×PBS, 5×105 cells were collected, 
resuspended in 500 μL binding buffer with 0.1 g/L Annexin 
V-FITC and 0.05 g/L PI, and then incubated for 15 min in the 
dark at room temperature.  Finally, the percent of apoptotic 
cells was immediately measured with a BD FACS Calibur 
Flow Cytometer and analyzed with CellQuest software (BD 
Biosciences).  

Results
CMC (compound 8) showed the best anticancer activity in vitro 
among the synthesized coumarin analogues 
The anticancer activities of different synthesized coumarin 
analogues were evaluated in HCT116 colon cancer cells using 
the MTT viability assay.  The corresponding chemical struc-
tures are shown in Figure 1, and the anticancer activities 
against HCT116 cells are shown in Table 1.  Among the cou-
marin analogues, CMC (compound 8) had the best anticancer 
activity with an IC50 value of approximately 200 nmol/L and 
was selected for further mechanistic study.

CMC exhibited very potent anticancer activity against different 
cancer cell lines 
The effect of CMC on the viability of 9 human cancer cell lines 
derived from 6 different tissues was evaluated using an MTT 
assay.  As shown in Figure 2, CMC exhibited very potent 
anticancer activity.  The IC50 values for CMC ranged from 
75 nmol/L to 1.57 μmol/L, and the average IC50 value was 
approximately 0.53 μmol/L.  Then the selective cytotoxicity of 
CMC was further evaluated using human normal fetal fibro-
blast cell line WI-38.  CMC exerted markedly weaker cytotox-
icity against WI-38 cells with an IC50 value of approximately 
12.128 μmol/L than against other 9 cancer cell lines.

CMC specifically and reversibly induced G2-M phase arrest in 
HeLa cells 
Using brightfield microscopy, we found that treatment with 
CMC caused detachment of adherent cancer cells.  The cells 

became round (data not shown), a phenomenon that occurs 
during mitosis.  To test the possibility that CMC affects mito-
sis, the effect of CMC on cell cycle progression in HeLa cells 
was examined.  First, HeLa cells were treated with CMC at dif-
ferent concentrations for 24 h.  As shown in Figure 3A, CMC 
treatment resulted in a dose-dependent accumulation of HeLa 
cells in G2-M phase with concomitant losses from G0-G1 phase.  
No change in S-phase was observed.

To examine the specificity of the CMC-elicited mitotic 
arrest, HeLa cells were synchronized at the G1/S bound-
ary by double thymidine block and were then treated with 
either 0.63 μmol/L CMC or 0.33 μmol/L nocodazole (positive  

Table 1.  The in vitro anti-proliferation activities of 36 coumarin analogues 
in HCT116 colorectal carcinoma cells.   

  Compound ID	  IC50 (μmol/L)*               
 

  1	 28.153±2.130
  2	   1.237±0.159
  3	   7.809±0.492
  4	 21.307±1.736
  5	 33.893±2.764
  6	   1.661±0.266
  7	   0.248±0.049
  8	   0.202±0.038
  9	 16.297±1.087
10	 23.211±1.236
11	 28.678±3.109
12	 29.303±2.622
13	 10.133±1.041
14	 34.203±3.131
15	 31.893±3.503
16	 14.806±1.500
17	 10.130±1.120
18	 27.552±2.772
19	 34.145±3.894
20	   3.177±0.200
21	 40.520±6.534
22	 31.859±3.403
23	 16.720±1.653
24	 13.440±1.112
25	 17.468±0.753
26	 13.892±0.576
27	 13.897±0.623
28	 12.273±0.713
29	 12.535±0.631
30	 11.548±0.909
31	 14.906±0.592
32	   9.579±0.441
33	   6.896±0.416
34	 21.314±0.779
35	 22.095±1.536
36	   8.183±0.704
doxorubicin	   0.061±0.006

*Cell proliferation assay was done according to the method mentioned 
in the Materials and methods section. The IC50 values represent the 
mean±SEM of quadruplicate determinations.
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Figure 1.  The chemical structures of synthesized coumarin analogues.
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control) immediately following their release from the block.  
Flow cytometry analysis was conducted to examine cell cycle 
progression of CMC-treated cells.  Within 6 h and 9 h post-
release, CMC-treated cells entered S phase and G2 phase, 
respectively, just as did the control cells.  However, at the 12 

h time point after release, CMC-treated cells were arrested at 
mitosis in striking contrast to the entrance of control cells into 
the next cell cycle (Figure 3B).  These data indicated that CMC 
induced an accumulation of cells specifically at G2-M phase 
without affecting other cell cycle phases.

Finally, the reversibility of CMC-induced mitotic arrest was 
assessed by withdrawing CMC immediately after 12 h of treat-
ment.  Following CMC withdrawal, arrested cells began to exit 
from mitosis within 3 h, and 6 h later, most cells entered the 
next G1 phase.  This result indicated that CMC-induced mitotic 
arrest is reversible (Figure 3C).

CMC changed the phosphorylation state of G2-M regulators in 
HeLa cells 
As expected from the previous results, alterations in mitosis-
specific protein expression were also detected.  Briefly, HeLa 
cells were treated with CMC at different concentrations for 
24 h and then samples were prepared.  The levels of MPM-2, 
CDC25C and β-actin were measured using western blot anal-
ysis.  MPM-2 commonly reflects the phosphorylation level of 
mitosis-specific proteins.  As shown in Figure 4, MPM-2 was 

Figure 2.  CMC had good anticancer activity in 9 different cancer cell 
lines.  The viability of 9 cancer cell lines and 1 human fetal lung fibroblast 
cell line was assessed by MTT assay after 72 h of treatment with CMC.  All 
results are expressed as the mean±SEM of four independent experiments.

Figure 3.  CMC-treated HeLa cells specifically and reversibly arrested in G2-M phase.  (A) HeLa cells arrested in G2-M phase in a dose-dependent manner.  
HeLa cells were treated with CMC at doses ranging from 10 μmol/L to 0.04 μmol/L for 24 h.  0.33 μmol/L nocodazole was used as a positive control.  
The samples were fixed, stained with PI, and analyzed using flow cytometry.  (B) HeLa cells were specifically arrested in G2-M phase.  To evaluate if CMC 
only induced G2-M arrest, HeLa cells were synchronized at the G1/S border using a thymidine-thymidine block.  The cells were then released and treated 
with 0.63 μmol/L CMC.  Samples were collected at 6 h, 9 h, 12 h, and 15 h and then subjected to flow cytometry analysis.  (C) HeLa cells could re-enter 
the cell cycle following deprivation of CMC.  HeLa cells were treated with either CMC or nocodazole (positive control) for 12 h.  The medium containing 
CMC was then removed and fresh medium was added.  Samples were collected at 0 h, 3 h, 6 h, and 9 h after deprivation of CMC and then subjected to 
flow cytometry analysis.  All of the data shown are representative of three independent experiments with similar results.
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slightly increased when cells were treated with 0.16 μmol/L 
CMC but was significantly increased when cells were treated 
with 0.63 μmol/L CMC.  Consistent with this result, there was 
a shift to a slower migrating form of CDC25C that increased 
in a dose-dependent manner, which is indicative of changes 
in the phosphorylation state of the protein.  These changes in 
protein phosphorylation are consistent with cell cycle arrest in 
mitosis as has been shown previously[48].  

CMC induces G2-M arrest through the depolymerization of 
microtubules in a direct manner 
Cellular microtubules are important components of spindles, 
which play an important role in mitosis.  After sister chro-
matids are pulled apart by spindles, a single mitotic cell can 
divide into two cells.  To investigate whether CMC affected 
tubulin polymerization, the microtubule status of CMC-
treated HeLa cells was detected by immunocytochemistry.  
Briefly, cells were exposed to either CMC or a reference drug 
(nocodazole) for 8 h, fixed and then incubated with β-tubulin 
antibody at 4 °C overnight.  The next day, cells were incubated 
with Alexa Fluor® 488-labeled donkey anti-mouse IgG, stained 
with Hoechst 33342 and observed with confocal microscopy.  

Figure 4.  CMC changed the phosphorylation state of G2-M regulators.  
HeLa cells were treated with CMC at doses ranging from 10 μmol/L 
to 0.04 μmol/L for 24 h.  0.1% DMSO was used as a negative control.  
Phosphorylation of a G2-M-specific protein (MPM-2) and CDC25C were 
detected using western blot analysis.  β-actin was used as an internal 
control.  MPM-2 and CDC25C antibodies were diluted at 1:1000 in 
1×TBST.  β-actin antibody was diluted at 1:10000 in 1×TBST.  A non-
specific band that cross-reacted with the CDC25C antibody is marked with 
an asterisk.

Figure 5.  CMC inhibited the poly
merization of microtubules.  (A) CMC 
depolymerized microtubules in vivo.  
HeLa cells were treated with CMC 
at doses ranging from 2.5 μmol/L 
to 0.04 μmol/L for 8 h.  0.1% DMSO 
was used as a negative control, and 
0.33 μmol/L nocodazole was used 
as a positive control.  Samples were 
then prepared as mentioned in the 
“Materials and methods” section, 
and the status of microtubules was 
observed using an Olympus confocal 
microscope (Olym pus, Tokyo, Japan).  
(B) CMC depolymerized purif ied 
tubulin in vitro.  CMC was added to 
fluorescently labeled bovine tubulin 
at 37 °C for 1 h, and its effect on 
tubulin polymerization was detected 
with a FlexStat ion 3 Microplate 
Reader (Molecular Devices).  Noco
dazole (3 μmol/L) was used as a 
positive control, and DMSO was used 
as a negative control.
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CMC depolymerized microtubules in a dose-dependent 
manner (Figure 5A).  When treated with 0.16 μmol/L CMC, 
the polymerization status of microtubules was only slightly 
changed; however, when cells were treated with 0.63 μmol/L 
CMC, almost all microtubules were depolymerized compared 
with the control group.  This phenomenon was consistent with 
the aforementioned results of the cell cycle and western blot 
analyses.  

To deduce the mode of CMC-mediated microtubule depo-
lymerization, we used a fluorescence-based tubulin polymer-
ization assay.  Nocodazole was used as the positive control.  
As shown in Figure 5B, CMC inhibited tubulin polymerization 
in a dose-dependent manner, thereby indicating that CMC 
inhibited the polymerization of tubulin in a direct manner.

CMC induced apoptosis in a time- and dose-dependent manner 
It has been reported that G2-M arrest caused by microtubule 
depolymerization is followed by apoptosis[49–51]; therefore, we 
chose to further investigate the apoptosis induced by CMC.

As shown in Figures 6A and 6B, persistent treatment with 
CMC led to a progressive increase in apoptosis in a time-
dependent manner.  Apoptosis of CMC-treated cells increased 
within 24 h (58.66% viable, 22.09% in early apoptosis and 
16.59% cells in late apoptosis).  Most cells were apoptotic at 
48 h (56.58% in early apoptosis and 29.93% in late apoptosis).  
At 72 h, most cells were in late apoptosis (17.24% in early 
apoptosis and 77.87% in late apoptosis).  

HeLa cells were then treated with varying doses of CMC for 
48 h.  As shown in Figures 6C and 6D, the levels of apoptosis 
in cells treated with 0.04 μmol/L CMC (a dose without induc-
tion of G2-M arrest as shown in Figure 3A) was the same as the 
negative control.  The levels of apoptosis increased in a dose-
dependent manner when the cells were treated with G2-M-
arrest-inducing doses (doses greater than 0.16 μmol/L as 
shown in Figure 3A).

The three-dimensional profile of cell cycle progression ver-
sus time of CMC treatment shown in Figure 6E demonstrated 
that G2-M arrest was maximal (~76.43%) at 12 h of treatment.  
After this point, the G2-M population disappeared concomi-
tant with the emergence of a characteristic hypodiploid (<2N 
DNA) sub-G1 peak, which indicates apoptotic cells (Figures 6E 
and 6F).  This apoptotic population peaked at 72 h (~59.33%) 
posttreatment.  The in vitro findings strongly therefore indicate 
that CMC-treated cells arrest in G2-M phase before beginning 
to apoptose.  

Discussion
Coumarins are a hot topic of research due to their diverse 
pharmaceutical activities and wide distribution in nature.  
To find a coumarin analogue with good anticancer activity, 
we synthesized a series of coumarin analogues (Figure 1) 
and evaluated their effects on the viability of HCT116 cells 
(Table 1).  CMC had the best anticancer activity and was thus 
selected for further mechanistic study.  Nine cancer cell lines 
derived from 6 different tissues and the WI-38 cell line derived 
from normal embryonic (3 month gestation) lung tissue were 

used to evaluate the anticancer effects of CMC.  We found that 
CMC had a high level of anticancer activity in vitro, with an 
IC50 value ranging from 75 nmol/L to 1.57 μmol/L.  The cyto-
toxic effect of CMC on WI-38 cells was less potent, with an IC50 
value of 12.128 μmol/L (Figure 2), which implies that CMC 
has relative selectivity for cancer cells versus normal cells.  
CMC also had the best anticancer activity and similar IC50 val-
ues against the HeLa, MDA-MB-435S, HCT-15, and A431 cell 
lines.  The HeLa cell line was subsequently used for further 
anticancer mechanism study.

During the above experiments, it came to our attention that 
CMC caused the evident detachment of HeLa cells that became 
round (data not shown), a phenomenon frequently observed 
during the mitotic process.  The effect of CMC on cell cycle 
progression was therefore evaluated to see if CMC affected 
cellular mitosis.  After 24 h of treatment, CMC induced G2-M 
arrest in a dose-dependent manner.  The minimal dose that 
caused nearly complete arrest in G2-M phase was approxi-
mately 0.63 μmol/L (Figure 3A); importantly, no concurrent 
change in S-phase was observed.  To determine whether CMC 
only induced G2-M arrest, we treated synchronized HeLa 
cells and found that CMC only influenced G2-M phase with-
out affecting other cell cycle phases (Figure 3B).  G2-M arrest 
caused by CMC could be reversed by deprivation of CMC 
(Figure 3C).  Western blot analysis showed that increasing 
doses of CMC induced increased levels of phosphorylation of 
G2-M phase-specific proteins, which provided proof of G2-M 
arrest (Figure 4).

When cells were treated with CMC, the cell shape became 
round with an increased disorder of M-phase-condensed 
chromosome alignment in a dose-dependent manner (data not 
shown), which is reported to be induced by alterations to the 
microtubular cytoskeleton[52].  The microtubule state of CMC-
treated cells was therefore tested by ICC.  ICC analysis showed 
that CMC induced microtubule depolymerization after an 
eight-hour treatment (Figure 5A).  Furthermore, CMC effects 
on tubulin polymerization were tested.  These results showed 
that CMC could inhibit tubulin polymerization directly (Fig-
ure 5B).  Many articles have reported that G2-M arrest induced 
by tubulin-targeting agents is caused by their microtubule 
depolymerization effects[53–58].  The results shown in Figures 
3–5 indicate that CMC caused G2-M arrest by directly mediat-
ing depolymerization of microtubules.

Replicated chromosomes must be accurately segregated 
into each daughter cell during mitosis, and the spindle 
checkpoint is a surveillance mechanism that delays anaphase 
onset until all chromosomes are correctly attached in a bipo-
lar fashion to the mitotic spindle[59].  Chemical inhibition of 
spindle dynamics, which relieves tension but does not destroy 
kinetochore-microtubule attachments, activates the spindle 
checkpoint[60, 61].  From the results shown in Figures 3 and 5, 
CMC depolymerized microtubules and induced G2-M arrest in 
a dose-dependent manner.  The dose of CMC needed to depo-
lymerize microtubules is the same as the dose of CMC needed 
to induce G2-M arrest, implying that the G2-M arrest induced 
by CMC is via microtubule depolymerization.
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It has been reported that microtubule-targeting agents can 
induce apoptosis via activation of the spindle checkpoint[62]; 
thus, apoptosis induced by CMC was evaluated using 
Annexin V/PI double staining.  As shown in Figures 6A and 
6B, 0.63 μmol/L CMC triggered apoptosis at 24 h and induced 

apoptosis in a time-dependent manner (Figures 6A and 6B).  
CMC also caused a significant increase in apoptosis at 48 h in a 
dose-dependent manner (Figures 6C and 6D), and G2-M arrest 
induced by CMC occurs before the commencement of apopto-
sis (Figures 6E and 6F).

Figure 6.  CMC induced apoptosis in a time- and dose-dependent manner.  (A) (B) HeLa cells were treated with 0.63 μmol/L CMC.  Samples were then 
collected at 24 h, 48 h, and 72 h followed by staining with Annexin V-FITC/PI.  The level of apoptosis was detected using flow cytometry.  (C) (D) HeLa 
cells were treated with CMC at doses ranging from 2.5 μmol/L to 0.04 μmol/L for 48 h.  Samples were then stained with Annexin V-FITC/PI.  Apoptosis 
was detected using flow cytometry.  (E) (F) HeLa cells were treated with 0.63 μmol/L CMC for 12 h-72 h, and the percentage of sub-G1 cells and G2-M 
cells was analyzed using the ModFit software provided with the FACSCalibur flow cytometer.



415

www.chinaphar.com
Ma YM et al

Acta Pharmacologica Sinica

npg

As mentioned, the importance of microtubules in mitosis 
makes them a superb target for a group of highly success-
ful, chemically diverse anticancer drugs[63–65].  In view of the 
success of this class of drugs, it has been argued that micro-
tubules represent the best cancer target to be identified so 
far, and it seems likely that drugs of this class will continue 
to be important chemotherapeutic agents even as more selec-
tive approaches are developed[63–65].  Relatively weak micro-
tubule-targeting coumarins could also be used as adjuvants 
in chemotherapy to attain increased efficacy with decreased 
toxicity[63–65].  The maintenance of low concentrations of 
microtubule-targeted drugs in tumor tissue for long dura-
tions could be more efficacious in killing tumor cells than the 
rapidly rising and falling drug concentrations associated with 
bolus administration at maximum tolerated doses[63–65].  These 
advantages make coumarins a hot area for further study.

Still elusive is the fact that different anticancer coumarins 
with different substitutions can have different mechanisms.  
It is reported that coumarin can reduce the expression of Ras 
and Myc, and it can also induce G0/G1 arrest and apoptosis 
via ROS[66].  Another coumarin analogue, decursin, inhibits 
the proliferation of the advanced human prostate carcinoma 
cell lines DU145, PC-3 and LNCaP by causing G1 arrest via an 
induction of Cip1/p21 and Kip1/p27[22].  Ferulenol and dicou-
marol stimulate tubulin assembly[67, 68], and geiparvarin is able 
to inhibit GTP-induced polymerization[69].  Here, we report on 
a novel microtubule-targeting coumarin analogue with high 
anticancer activity.  Our results provide clues for structure-
activity relationship studies and for further structural design 
of novel microtubule-targeting coumarin analogues.  
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Thiazolidione derivatives targeting the histidine 
kinase YycG are effective against both planktonic 
and biofilm-associated Staphylococcus epidermidis
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Aim: To evaluate the efficacies of six derivatives of Compound 2, a novel YycG histidine kinase inhibitor with the thiazolidione core 
structure in the treatment of medical device-related biofilm infections.  
Methods: The minimal inhibitory concentration (MIC) of the derivatives was determined using the macrodilution broth method, and 
the minimal bactericidal concentration (MBC) was obtained via sub-culturing 100 μL from each negative tube from the MIC assay onto 
drug-free Mueller-Hinton agar plates.  Biofilm-killing effect for immature (6 h-old) biofilms was examined using a semiquantitative plate 
assay, and the effect on mature (24 h-old) biofilms was observed under a confocal laser scanning microscope (CLSM).
Results: The derivatives potently suppressed the growth of Staphylococcus epidermidis.  The MIC values of the derivatives H2-10, 
H2-12, H2-20, H2-29, H2-27, and H2-28 on S epidermidis ATCC 35984 were 24.3, 6.5, 6.2, 3.3, 3.1, and 1.5 μg/mL, respectively.  The 
MBC values of these derivatives were 48.6, 52.2, 12.4, 52.6, 12.4, and 6.2 μg/mL, respectively.  The derivatives killed all bacteria in 
immature (6 h-old) biofilms and eliminated the biofilm proliferation.  The derivatives also displayed strong bactericidal activities toward 
cells in mature (24 h-old) biofilms, whereas they showed low cytotoxicity and hemolytic activity toward Vero cells and human erythro-
cytes.
Conclusion: The bactericidal and biofilm-killing activities of the new anti-YycG compounds were significantly better than the parent 
Compound 2.  

Keywords:  Staphylococcus epidermidis; antibacterial agent; half maximal inhibitory concentration; minimal inhibitory concentration; 
biofilm-killing activity
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Introduction
Coagulase-negative Staphylococcus epidermidis (S epidermidis) is 
one of the most common opportunistic pathogens involved in 
implanted medical device-associated nosocomial infections[1–3].  
With the increasing use of implanted medical devices, such 
as intravascular catheters, artificial pacemakers, cerebrospinal 
fluid shunts, and artificial organs, S epidermidis biofilm-associ-
ated infections have become a common problem.  The ability 
to form biofilms on the surfaces of the implanted devices is the 

primary pathogenic trait of S epidermidis, and the bacteria in 
the biofilms are resistant to antimicrobial treatments and host 
immune defenses[4–6].  Because of the increasing emergence of 
multidrug-resistant strains, the discovery of novel antibiotics 
to combat staphylococcal biofilm infections is imperative[7].  
Completion of the genome sequencing of S epidermidis[8, 9] 
makes it possible to discover potential antimicrobial agents 
using genomics-based drug discovery strategies.

The majority of bacteria use a phosphotransfer mechanism 
termed a two-component system (TCS), comprised of a histi-
dine kinase (HK) and a response regulator (RR), to sense envi-
ronmental conditions and bring about appropriate changes in 
cellular behavior[10–12].  TCSs are important in regulating the 
virulence and propagation of pathogenic bacteria[13–15], and 
they are considered attractive targets for the development of 
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novel anti-bacterial drugs.  The two-component YycG/YycF 
system, originally identified in Bacillus subtilis[16, 17], is highly 
conserved and specific to low G+C gram-positive bacteria, 
including S epidermidis.  YycG/YycF is essential for cell viabil-
ity, cell wall metabolism, autolysin synthesis, and biofilm for-
mation in staphylococcal species.  Upon sensing a signal from 
the external milieu, YycG autophosphorylates by transferring 
a phosphate group from ATP to a histidine residue within the 
kinase and then transferring it to an aspartate residue within 
the conserved receiver domain of the response regulator YycF.  
Phosphorylation of YycF results in changes in its ability to 
bind gene promoters and regulate transcription[18–20].

Several inhibitors that target YycG in B subtilis, Staphylococ-
cus aureus (S aureus), and S epidermidis have been documented 
to inhibit bacterial growth[21–23].  We previously described two 
inhibitors (Compounds 2 and 5) that target the HK domain of 
S epidermidis YycG and have bactericidal and biofilm-killing 
activities[24].  To obtain more effective and less toxic inhibitors, 
the structure of Compound 2 was optimized, and a series of 
derivatives were designed and synthesized, some of which 
inhibit the growth of planktonic S epidermidis cells[25].  In the 
present study, we explored the characteristics of these deriva-
tives, including their YycG phosphorylation-inhibiting activ-
ity, bactericidal activity, biofilm-killing activity, and cytotoxic-
ity.  The inhibitory and bactericidal activities of these deriva-
tives against S aureus were also assessed.

Our study of structure-based modification of a leading anti-
TCS compound may contribute to the discovery of new antibi-
otics to treat staphylococcal biofilm infections.

Materials and methods
Bacterial strains, media, and derivatives of Compound 2
The bacterial strains used in this study were S epidermidis 

ATCC 12228 (biofilm negative), S epidermidis ATCC 35984 (bio-
film positive), S aureus ATCC 49230, S aureus ATCC 25923, and 
E coli ATCC 25922.  E coli strains were grown in Luria-Bertani 
(LB) broth, and staphylococcal strains were cultivated in 
tryptic soy broth medium (TSB; Oxoid Ltd, Basingstoke, UK).  
The six derivatives of Compound 2 mentioned in this report 
(including five reported previously[26] and one newly syn-
thesized) are H2-10, H2-12, H2-20, H2-27, H2-28, and H2-29.  
These compounds were synthesized by modifying the func-
tional groups while keeping the thiazolidione core structure 
intact.  The structural formulas of the derivatives are listed in 
Figure 1.  To generate the derivative compounds, the terminal 
(2-methoxy-4-vinyl-phenoxy)-acetic acid functional group of 
Compound 2 was replaced by a (5-vinyl-furan-2-yl)-benzoic 
acid fragment with similar structure and by a shortened side 
alkyl chain, according to the principle of multi-target-directed 
ligands.  The derivatives were dissolved in dimethyl sulfoxide 
(DMSO; AMRESCO, USA) to create 200 mmol/L stock solu-
tions.

Expression and purification of the YycG HATPase_c and HisKA 
domains 
The HisKA and HATPase_c domains (amino acids 370–610, 
NCBI accession number YP_190074) of YycG (termed YycG’) 
from S epidermidis ATCC 35984 were expressed as a fusion 
protein with an N-terminal maltose binding protein six-
histidine (MBP-His) tag.  The 720-bp YycG ORF was PCR-
amplified from S epidermidis ATCC 35984 chromosomal 
DNA with the primers YycG For-BamH I (5’-CGCGGATC-
CGAACAACAACAAGTCGAACGT-3’) and YycG Rev-Xho I 
(5’-CCGCTCGAGTTATTCATCCCAATCACCGTCT-3’).  After 
digestion with BamH I and Xho I, the PCR product was cloned 
into pET28a (Novagen).  The resultant plasmid was trans-

Figure 1.  The structures of the thiazolidione derivatives.  Based on the thiazolidione core structure of Compound 2 {2-{4-{3-(2-ethylphenyl)-2-[(2-
ethylphenyl)imino]-4-oxothiazolidin-5-ylidene}methyl}-2-methoxyphenoxy}acetic acid, six derivatives were designed and synthesized by modifying the 
functional groups through cyclization, aldol condensation, substitution, and hydrolyzation reactions.  H2-10, 2-{4-{[3-(2-ethylphenyl)-2-[(2-ethylphenyl)
imino]-4-oxothiazolidin-5-ylidene}methyl}phenoxy}acetic acid; H2-12, 3-{5-{{3-(2-ethylphenyl)-2-[(2-ethylphenyl)imino]-4-oxothiazolidin-5-ylidene)methyl}
furan-2-yl}benzoic acid; H2-20, 3-{5-{{4-oxo-3-(o-tolyl)-2-(o-tolylimino)thiazolidin-5-ylidene]methyl}furan-2-yl}benzoic acid; H2-27, 3-{5-{[4-oxo-3-(p-tolyl)-
2-(p-tolylimino)thiazolidin-5-ylidene]methyl}furan-2-yl}benzoic acid; H2-29, 3-{5-{{3-(4-methoxyphenyl)-2-[(4-methoxyphenyl)imino]-4-oxothiazolidin-5-
ylidene}methyl}furan-2-yl}benzoic acid; and H2-28, 4-{5-{[4-oxo-3-(o-tolyl)-2-(o-tolylimino)thiazolidin-5-ylidene]methyl}furan-2-yl}benzoic acid.
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formed into E coli BL21 (DE3).  The BL21 (DE3) strain carrying 
the plasmid was grown in LB to an optical density of 0.6 at 600 
nm (OD600), and then induced with 0.8 mmol/L isopropyl β-D-
1-thiogalactopyranoside (IPTG).  After 8 h induction at 25 °C, 
the cells were harvested, and recombinant YycG’ protein was 
purified by Ni2+ affinity chromatography using a Ni-NTA 
column (Qiagen, Germany).  The MBP-His-tagged YycG’ was 
then cleaved with TEV protease, and the resultant un-tagged 
YycG’ was further purified by Ni-NTA and Superdex 75 gel 
filtration columns (GE Healthcare, USA).

Inhibition assay for YycG′ autophosphorylation activity
The Compound 2 derivatives were tested for inhibition of 
YycG’ autophosphorylation using the Kinase-GloTM Lumines-
cent Kinase Assay (Promega, Madison, WI, USA) in a solid 
black flat-bottomed 96-well plate[24].  Briefly, 0.13 μmol/L 
recombinant YycG’ was pre-incubated with serial dilutions 
of the derivatives in reaction buffer (40 mmol/L Tris pH 
8.0, 20 mmol/L MgCl2, and 0.1 mg/mL BSA) at 25 °C for 30 
min.  Then, 4 μmol/L ATP was added and the plates were 
incubated for 30 min at 25 °C, and Kinase-Glo™ Reagent was 
added to detect the remaining ATP, recorded by luminescence 
measurement (RLU).  Recombinant YycG’ incubated with 
Compound 2 was used as a positive control, and recombinant 
protein with no derivative added was used as a negative con-
trol in these experiments.  The rate of protein phosphorylation 
(Rp) inhibition by the derivatives was calculated using the 
equation (Eq 1). 

The half maximal inhibitory concentration (IC50, the concen-
tration of the derivatives required to inhibit half of the auto-
phosphorylation of the recombinant YycG’) was determined 
by Origin 8.0 software (OriginLab, Northampton, USA)[24].

Minimal inhibitory concentration (MIC) and minimal bactericidal 
concentration (MBC) assays
MIC assays for the antibacterial activities of the derivatives 
were performed according to the macrodilution (tube) broth 
method of the Clinical and Laboratory Standards Institute 
(CLSI) of America.  Briefly, the derivatives were serially 
diluted twofold into eight tubes containing 4 mL Mueller-
Hinton Broth (OXOID, UK), yielding final concentrations of 
100 μg/mL to 0.78 μg/mL.  The turbidity of cultures incu-
bated for 6 h was adjusted to match that of a 0.5 McFarland 
standard (approximately 108 CFU/mL), and 0.02 mL of the 
bacterial inoculum was added to each tube.  Inoculated broth 
containing no antibiotic was included as a bacterial growth 
control and a tube of un-inoculated broth was used as a steril-
ity control.  The bacteria were incubated at 37 °C for 12 h.  The 
lowest concentration that completely inhibits visible growth of 
the organism as detected by the unaided eye was recorded as 
the MIC[27].  

The MBC was obtained by sub-culturing 100 μL from each 
negative (no visible bacterial growth) tube from the MIC assay 

onto drug-free Mueller-Hinton agar plates.  The plates were 
incubated at 37 °C for 24 h, and the MBC was defined as the 
lowest concentration of drug which produced subcultures 
growing no more than five colonies on each plate[27].

Biofilm-killing assays
Biofilm formation was detected using a semiquantitative plate 
assay[26].  An overnight culture of S epidermidis ATCC 35984 
was diluted 1:200 into TSB medium, and incubated statically 
for 6 h in a polystyrene 96-well plate at 37 °C.  Subsequent to 
the removal of planktonic cells, fresh TSB containing the seri-
ally diluted derivatives was added to each biofilm, and the 
plates were incubated for another 18 h at 37 °C.  After incuba-
tion, the wells were washed gently three times with phosphate 
buffered saline (PBS), fixed with methanol, and stained with 
2% (w/v) crystal violet[28].  The absorbance of the wells was 
determined at 570 nm using a spectrophotometer (DTX880, 
Beckman Coulter, USA).

To determine the effect of the derivatives on cell viability 
in mature biofilms, the Live-Dead Bacterial Viability method 
(Live-Dead BacLight, Molecular Probes, USA) was used.  
Overnight cultures of S epidermidis ATCC 35984 grown in TSB 
medium were subcultured for another 6 h.  The turbidity of 
the culture was adjusted to match that of a 0.5 McFarland stan-
dard (approximately 108 CFU/mL) and inoculated (1:200) into 
cover-glass cell-culture dishes (WPI, USA), which were then 
incubated at 37 °C for 24 h.  After removal of the planktonic 
cells, fresh TSB containing the derivatives at concentrations 
corresponding to 4×MIC was added, and the dishes were incu-
bated at 37 °C for another 16 h.  After incubation, the dishes 
were carefully washed three times with normal saline (NS), 
stained with Live-Dead reagents (containing SYTO 9 and PI) 
at room temperature for 15 min, and observed under a Leica 
TCS SP5 confocal laser scanning microscope (CLSM).

Cytotoxicity and erythrocyte hemolysis
The cytotoxicity of the derivatives to Vero cells (African green 
monkey kidney cells) was detected using the Cell Prolifera-
tion Kit I (Roche, Indianapolis, USA) in 96-well cell culture 
plates.  After exposure of the cells (~104 cells per well) to the 
serially diluted derivatives for 48 h, relative cell numbers 
were assayed by co-incubation with 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 4 h at 37 °C 
in 5% CO2.  After incubation, the purple formazan salts were 
dissolved with DMSO, and the absorbance of each well was 
measured at 595 and 655 nm then converted to percentages of 
the control (cells treated with the solvent, 0.1% DMSO).  The 
concentration of the derivatives with 50% cytotoxicity for Vero 
cells (CC50) was calculated using the Origin 8.0 software (Ori-
gin Lab, Northampton, USA).

To determine the hemolytic activities of the derivatives on 
erythrocytes, 5% (v/v) healthy human erythrocytes re-sus-
pended in NS were co-incubated with the derivatives at MIC, 

Rp= RLU(YycG’+derivative+ATP+Kinase-Glo™)–RLU(YycG’+ATP+Kinase-Glo™) ×100%                     RLU (ATP+ Kinase-Glo™) –RLU (YycG’+ATP+ Kinase-Glo™)
(Eq 1)
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4×MIC, or 100 μg/mL for 1 h at 37 °C in 96-well microtiter 
plates.  After the incubation, the suspensions were centrifuged 
at 350×g for 10 min, and the level of hemolysis was deter-
mined by measuring the absorbance of the supernatant at 570 
nm[25].  Cells treated with DMSO (0.1%) and Triton-X100 (1%) 
were used as negative and positive controls, respectively.

Results
In our previous study, five derivatives were designed and syn-
thesized based on the chemical structure of Compound 2[24, 25].  
The biological characteristics of the Compound 2 derivatives, 
including these five derivatives that were previously reported 
(H2-10, H2-12, H2-20, H2-29, and H2-27) and the newly syn-
thesized H2-28, were further explored in the present investiga-
tion.

Inhibition of YycG′ enzyme activity by the derivatives
To detect the enzyme inhibiting activities of the derivatives on 
the YycG protein, recombinant YycG’ (~29 kDa) was expressed 
as a fusion protein with an N-terminal maltose binding protein 
tag and purified using the ProBondTM Purification System (pro-
tein purity >90%).  The enzymatic activity of the recombinant 
YycG’ was measured using the Kinase-GloTM Luminescent 
Kinase assay, and all 6 derivatives displayed dose-dependent 
inhibition of its autophosphorylation activity.  At 100 µmol/L 
(50 μg/mL), H2-10, H2-12, H2-20, H2-29, H2-27, and H2-28 
inhibited YycG’ (0.13 μmol/L) enzyme activity by 55.22%, 
63.70%, 83.65%, 50.75%, 78.31%, and 58.59%, respectively.  
The IC50 values of the six derivatives were 88.35 μmol/L (42.9 
μg/mL), 61.15 μmol/L (31.9 μg/mL), 34.83 μmol/L (17.2 μg/
mL), 66.68 μmol/L (35.1 μg/mL), 22.15 μmol/L (10.9 μg/mL), 
and 82.51 μmol/L (40.7 μg/mL), respectively, and the IC50 of 
Compound 2 was 47.9 μmol/L (24.9 μg/mL) (Table 1).

Antimicrobial activity of the derivatives
The MIC values of the six derivatives for S epidermidis ATCC 
35984 and 12228 were determined.  All 6 derivatives were 

found to inhibit bacterial growth more effectively than Com-
pound 2.  The MIC values of H2-10, H2-12, H2-20, H2-29, 
H2-27, and H2-28 on S epidermidis ATCC 35984 were 24.3, 6.5, 
6.2, 3.3, 3.1, and 1.5 μg/mL, respectively; and the MBC values 
were 48.6, 52.2, 12.4, 52.6, 12.4, and 6.2 μg/mL, respectively 
(Table 1).  Additionally, all derivatives inhibited the growth of 
Sepidermidis ATCC 12228 and S aureus (ATCC 49230 and ATCC 
25923) (Table 2), whereas they had no effect on the growth of E 
coli strain ATCC 25922 at the highest tested concentration (100 
μg/mL).  The MIC/MBC values of these 6 derivatives ranged 
from 1/2 to 1/4, except for those of H2-12 and H2-29 (which 
had MIC/MBC values of 1/8 and 1/16, respectively).

Effects of the derivatives on S epidermidis biofilm proliferation
Effects of the derivatives on the proliferation of 6-h-old S epi-
dermidis ATCC 35984 biofilms were detected by a microtiter 
plate assay.  All derivatives showed biofilm-killing effects on 

Table 1.  Biological effects of the six derivatives.   

   Derivativesa	      Molecule weight	        IC50
b (mg/L)	   MICc (mg/L)       MBCc (mg/L)	    MBKCc (mg/L)        CC50

d (mg/L)           Hemolysise (%)
 
	 Compound 2f	 519	 24.9	 26.0	 51.9	 51.9	     50.0	 2.31±0.35
	 H2-10	 486	 42.9	 24.3	 48.6	 24.3	 >100.0	 0.36±0.11
	 H2-12	 522	 31.9	   6.5	 52.2	 13.1	 >100.0	 0.16±0.03
	 H2-20	 494	 17.2	   6.2	 12.4	   6.2	 >100.0	 0.29±0.12
	 H2-29	 526	 35.1	   3.3	 52.6	   3.3	 >100.0	 0.59±0.32
	 H2-27	 494	 10.9	   3.1	 12.4	   6.2	 >100.0	 0.15±0.10
	 H2-28	 494	 40.7	   1.5	   6.2	   3.1	 >100.0	 0.12±0.06

a Stock solutions of the compounds were prepared in 0.1% (v/v) DMSO.
b IC50 represents half maximal inhibitory concentration of the derivatives, which inhibit half of the autophosphorylation of recombinant YycG′.
c MIC, MBC, and MBKC represent the minimal inhibitory concentration, minimal bactericidal concentration, and minimal biofilm-killing concentration of 
the derivatives against S epidermidis ATCC 35984.
d CC50 represents the derivative concentration that produces 50% cytotoxicity effects on Vero cells. The highest concentration tested in the experiment 
was 100 mg/L. 
e Hemolytic activities of the derivatives on healthy human erythrocytes were shown at their MICs against S epidermidis ATCC 35984.
f All values for Compound 2 were determined in this work.

Table 2.  Anti-Staphylococcus activities of the derivatives.  

 	                                                  MICb (mg/L)
  Derivativesa      S epidermidis   S epidermidis       S aureus        S aureus  
                            ATCC 35984	 ATCC 12228    ATCC 49230   ATCC 25923
 
	Compound 2c	 26.0	 26.0	 51.9	 51.9
	H2-10	 24.3	 24.3	 12.2	 24.3
	H2-12	   6.5	   6.5	   6.5	   6.5
	H2-20	   6.2	   6.2	   3.1	   6.2
	H2-29	   3.3	   3.3	   6.6	   6.6
	H2-27	   3.1	   3.1	   3.1	   6.2
	H2-28	   1.5	   1.5	   3.1	   3.1

a Stock solutions of the compounds were prepared in 0.1% (v/v) DMSO.
b MIC which represents minimal inhibitory concentration of the derivatives 
was determined by the broth microdilution (in tubes) method of the CLSI 
of America.
c MIC values for Compound 2 were determined in this work.
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immature (6-h-old) S epidermidis ATCC 35984 biofilms (Figure 
2), especially H2-28 and H2-29 [minimal biofilm-killing con-
centration (MBKC)=3.1 μg/mL and 3.3 μg/mL, respectively], 
which were stronger than Compound 2 (MBKC=51.9 μg/mL) 
(Table 1).  

Bactericidal effects of the derivatives on mature S epidermidis 
biofilms
The bactericidal activities of the derivatives on mature 
(24-h-old) S epidermidis biofilms were detected by a confocal 
microscope; treatment with 0.1% DMSO or vancomycin (128 
μg/mL) served as the controls.  Each derivative was added 
individually to a mature biofilm at a concentration of 4×MIC, 
and incubated for 16 h.  Significant reductions of viable cells 
in the mature biofilms were observed by CLSM with Live-
Dead staining.  All of the derivatives (24.3 μg/mL H2-10, 26.1 
μg/mL H2-12, 24.7 μg/mL H2-20, 13.1 μg/mL H2-29, 12.4 
μg/mL H2-27, and 12.4 μg/mL H2-28) showed bactericidal 
activity against bacteria in mature biofilms, especially H2-20, 
H2-27, and H2-29 (Figures 3).  In contrast, DMSO (0.1%) and 
vancomycin (128 μg/mL, Bio Basic Inc, Canada) showed little 
effect on bacterial viability within a biofilm (Figure 3).

Cytotoxicity and hemolysis of the derivatives in vitro
The cytotoxicity of the derivatives to mammal cells was inves-
tigated using Vero cells and an MTT assay.  Cells treated with 
0.1% DMSO and untreated cells were used as controls.  Com-
pared with the control group, after treatment with the deriva-

tives, no obvious cytotoxicity to Vero cells was detected.  The 
CC50 values of all the derivatives were higher than 100 μg/mL, 
which was the highest concentration used in the present study 
(Table 1).

Hemolysis of healthy human erythrocytes induced by the 
derivatives was examined, with vancomycin treatment as 
a control.  Erythrocytes treated with 1% Triton-X100 and 
untreated erythrocytes served as complete hemolysis (100%) 
and no hemolysis (0%) controls, respectively.  At the MIC con-
centrations, none of the derivatives displayed obvious induc-
tion of hemolysis of healthy human erythrocytes (<1% com-
pared to the control), even at the highest concentrations (100 
μg/mL).  Derivatives H2-20, H2-27, and H2-28 had the lowest 
hemolytic activities (Table 1).

Discussion
S epidermidis and S aureus biofilm formation have become 
two of the most prevalent causes of nosocomial infections, 
especially in patients with prosthetic medical devices such 
as indwelling catheters and implanted foreign polymer bod-
ies[28, 29].  As biofilms render bacteria increasingly resistant to 
multiple antibiotics[30–32] and host defenses[33, 34], chronic biofilm 
infections persist in patients, and it often becomes necessary 
to remove the implanted devices[29].  New antimicrobial agents 
are thus urgently needed to combat biofilm-associated infec-
tions.

TCSs are composed of a sensor histidine kinase capable of 
autophosphorylation in response to an environmental signal 
and a response regulator that interacts with the phosphory-
lated HK and regulates the expression of specific genes[35].  
The YycG/YycF TCS has been extensively studied in recent 
years because of its essential role in pathogenic bacteria[16, 18, 36].  
YycG/YycF regulates bacterial murein biosynthesis[19, 37–42], cell 
division[16, 17, 39], lipid integrity[18, 37, 42, 43], virulence factor expres-
sion[19, 40, 42, 44–46], exopolysaccharide biosynthesis, and biofilm 
formation[19, 44, 46-48].  The YycG/YycF TCS is highly conserved 
in low G+C gram-positive bacteria but is absent in mammals 
and is thus considered a potential drug target in pathogenic 
bacteria[24, 27, 49–52].  We previously reported two newly dis-
covered compounds targeting YycG[24] that clearly possess 
biofilm-killing activities against S epidermidis[31].  To improve 
the antibacterial activities of these compounds, a series of 
derivatives were designed and synthesized by modifying the 
functional groups of Compound 2 while keeping the thiazo-
lidione core structure intact[25].  When the (5-vinyl-furan-2-yl)-
benzoic acid fragment was incorporated into the thiazolidine-
4-ones scaffold, the rigidity of the determined compound was 
enhanced.  That change might stabilize the thiazolidiones in 
the bonding pocket.  Six out of thirty-five derivatives were 
found to possess higher antibacterial activities than the com-
pound they were derived from, and they inhibited autophos-
phorylation of YycG, suggesting that the bactericidal activity 
of these derivatives is based on inhibiting the enzyme activity 
of the YycG HK domain.  However, the antibacterial activi-
ties of the derivatives did not always correlate with their IC50 
values, as was the case with derivative H2-28 in the present 

Figure 2.  Macroscopic profiles of the biofilms co-cultured with the 
derivatives.  S epidermidis strain ATCC 35984 was cultured in polystyrene 
microtiter plates at 37 °C for 6 h.  After removal of planktonic cells, fresh 
medium containing serial dilutions of the derivatives was added to the 
6-h-old biofilm, and then incubated at 37 °C for another 18 h.  After 
incubation, the biofilms were visualized by crystal violet staining.  The 
biofilm treated with 0.1% DMSO (NC) as well as the 6-h-old biofilm without 
further incubation served as controls.  The images are representative of 
results from three independent experiments.
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study.  This may be because the antibacterial activities of 
the derivatives may be affected by absorption by the bacte-
rial cell, cell membrane permeability, or cellular metabolism, 
whereas the IC50 of the YycG inhibitors was determined by an 
autophosphorylation assay analyzing the direct interaction 
between the inhibitor and purified YycG’ protein in vitro.  The 
YycG-targeting property of these derivatives accounts for their 
effectiveness against S epidermidis and S aureus, which are both 
low G+C gram-positive bacteria with highly conserved YycG/
YycF TCSs; this is also consistent with the low cytotoxicity of 
these derivatives to mammalian cells and with the absence of 
inhibitory activity on the growth of E coli strain ATCC 25922, 
as mammalian and E coli cells do not have genes homologous 
to yycG/yycF.

Bacteria in biofilms are 100–1000 times more resistant to 
antibiotics than planktonic cells[30–32], and vancomycin has little 
effect on S epidermidis biofilms even at high concentrations[28, 53].  
The anti-biofilm activities of the six derivatives described here 
toward S epidermidis ATCC 35984 were improved compared 
to Compound 2.  Lower concentrations of the derivatives 
compared with Compound 2 killed all bacteria in immature 
(6-h-old) biofilms and eliminated biofilm proliferation.  More 
diluted derivatives did not eliminate biofilm formation but 
disrupted its structure so that it lost mechanical stability and 
could be washed away easily (Figure 2).  The derivatives also 
displayed strong bactericidal activities toward cells in mature 
(24-h-old) biofilms, especially H2-20, H2-27, and H2-29, 
whereas Compound 2 mainly killed cells located at the bottom 

Figure 3.  Bactericidal effects of the derivatives on mature S epidermidis biofilms.  S epidermidis ATCC 35984 was grown in cover-glass cell-culture 
dishes at 37 °C for 24 h.  Subsequent to the removal of planktonic cells, the 24-h-old biofilms were further incubated at 37 °C for another 16 h with 
fresh TSB containing the following substances: 0.1% DMSO, 128 μg/mL vancomycin, 24.3 μg/mL H2-10, 26.1 μg/mL H2-12, 24.7 μg/mL H2-20, 13.1 
μg/mL H2-29, 12.4 μg/mL H2-27, or 12.4 μg/mL H2-28.  After incubation, the biofilms on the dishes were washed with normal saline and stained with 
Live-Dead reagents (containing SYTO9 and PI), and observed under CLSM using a 63×objective lens.  Images representative of the results from three 
independent experiments were three-dimensionally reconstructed using Imaris software based on CLSM data at approximately 0.5 µm increments.  The 
green fluorescent cells are viable, while red fluorescent cells indicate dead bacteria.
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of the biofilm[28].
In summary, six additional effective YycG inhibitors were 

designed and synthesized by modifying the chemical structure 
of the YycG inhibitor Compound 2.  Their bactericidal and 
biofilm-killing activities were significantly better than those 
of Compound 2.  The modification of anti-YycG leading com-
pounds will help to discover new agents to combat biofilm 
infections and multidrug-resistant bacterial infections.
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Dear Editor, 

Receptor-interacting protein 3 (RIP3) is a serine/threonine 
protein kinase, which has extensive substrates including its 
cognate kinase RIP1 and multiple metabolic enzymes involv-
ing oxidative phosphorylation[1, 2].  RIP3 has been shown to be 
essential for development, immunity and some physiological 
or pathophysiological responses to exogenous and endoge-
nous stimuli[3–5].  In 2009, three groups independently reported 
that RIP3 acted as a molecular switch between apoptosis and 
necrosis (also called as necroptosis)[6–8].  Specifically, RIP3 
could turn tumor necrosis factor (TNF)-induced cell death 
from apoptosis to necrosis[6].  Most of small-molecule antican-
cer drugs elicit their anticancer effects via apoptotic induc-
tion[9].  However, it is unclear whether RIP3 affects the cellular 
sensitivity to small-molecule anticancer drugs.

We treated A cells (NIH 3T3 cells, murine fibroblasts, 
RIP3–/–; typically undergoing apoptosis in response to TNF 
stimulation) and N cells (NIH 3T3 cells, murine fibroblasts, 
RIP3+/+; undergoing necroptosis in response to TNF stimu-
lation)[6] with small-molecule anticancer drugs of different 
mechanisms of action.  Detection by sulforhodamine B assays 
showed that A cells and N cells displayed differential sensi-
tivity only to the examined topoisomerase I (Top1) inhibitors 
camptothecins.  RIP3-deficient A cells revealed 32.6- and 40.2-
fold higher sensitivity than RIP3-proficient N cells to SN38 
and chimmitecan[10], respectively (Figure 1A).  Such differen-

tial sensitivity was reflected as higher apoptosis rates (Figure 
1B) and more rapid G2/M arrest (Figure 1C) in A cells than 
in N cells treated with chimmitecan.  Consistently, exposure 
to chimmitecan caused faster reduction of the target protein 
Top1 in A cells than in N cells (Figure 1D); and the treatment 
with chimmitecan or SN38 drove more γ-H2AX formation (a 
molecular marker for DNA double-strand breaks; Figure 1E) 
and produced more foci of phosphorylated ataxia telangi-
ectasia mutated kinase (p-ATM) at Ser 1981 (sensing DNA 
double-strand breaks; Figures 1F and 1G) in A cells than in N 
cells.  These results collectively indicate that the differential 
sensitivity of the RIP3-deficient A cells and the RIP3-proficient 
N cells to the examined Top1 inhibitors in all the tested events 
from inducing DNA double-strand breaks through sensing the 
damage signals to eliciting the final biological effects including 
cell cycle arrest, apoptosis and proliferation/growth inhibi-
tion.

Both A cells and N cells were kindly gifted from Prof Jiahuai 
HAN, who used them to successfully demonstrate the role of 
RIP3 in regulating TNF-inducing cell death[6].  The differential 
sensitivity of the RIP3-deficient and proficient murine fibro-
blasts to the Top1 inhibitors suggests a role of RIP3 in deter-
mining the cellular sensitivity to those agents.  In this case, 
however, RIP3 does not seem to directly affect the choice of 
cell death between apoptosis and necrosis, because no signifi-
cant difference of the cellular sensitivity to the other examined 
anticancer drugs except camptothecins was detectable (data 
not shown) and because RIP3-based differential responses of 
A cells and N cells to the Top1 inhibitors took place actually at 
the levels of the target protein Top1 and DNA double-strand 
breaks, not only at the level of cell death.  In contrast, our 
data seem to imply that RIP3 is involved in the DNA damage 

# These authors contributed equally to this work. 
* To whom correspondence should be addressed. 
E-mail zhmiao@mail.shcnc.ac.cn  
Received 2011-12-31    Accepted 2012-01-05  



427

www.chinaphar.com
He JX et al

Acta Pharmacologica Sinica

npg

Figure 1.  Differential sensitivity of RIP3-deficient A cells and RIP3-proficient N cells to camptothecins.  (A) A cells and N cells displayed differential 
sensitivity to camptothecins.  A cells (RIP3–/–) and N cells (RIP3+/+) were treated with gradient concentrations of chimmitecan or SN38 (10, 2, 0.4, 0.08, 
0.016, and 0.0032 μmol/L) for 72 h.  Cell viability was then determined by sulforhodamine B assays.  The IC50 value was calculated by SoftMax® Pro 
Software and the data from three independent experiments were presented as mean±SD.  (B) Exposure to chimmitecan for 24 h resulted in higher 
apoptosis rates in A cells.  Both A cells and N cells were treated with the indicated concentrations of chimmitecan or vehicle for 24 h, then stained 
with an annexin V antibody and propidium iodide (PI), and analyzed by flow cytometry.  The numbers represent apoptotic percentages.  (C) Exposure of 
A cells and N cells to chimmitecan for 24 h induced G2/M arrest.  Both cells were treated with chimmitecan or vehicle for 24 h, fixed, stained with PI, 
and analyzed by flow cytometry.  (D) Faster reduction of Top1 protein in A cells.  Cells were treated with 10 000 nmol/L chimmitecan for the indicated 
times.  Total cell lysates were collected and subjected to SDS-PAGE gels for Western blotting analyses.  The protein levels of RIP3, Top1, and GAPDH 
were determined.  (E) Faster formation of γ-H2AX in A cells.  The levels of γ-H2AX were detected by Western blotting at 1 h after the treatment with 
camptothecins.  (F) Higher levels of p-ATM at Ser1981 in A cells in responding to the treatment with chimmitecan.  Cells were treated with chimmitecan 
(400 nmol/L and 10 000 nmol/L) or vehicle for 1 h, fixed and stained with a specific antibody against the phosphorylated ATM at Ser1981 of (p-ATM, 
green foci) for fluorescence microscopy analyses.  Nuclei were identified by DAPI (4,6 diamidino-2-phenylindole) counterstaining (blue).  (G) Enlarged 
images of p-ATM at 10 000 nmol/L chimmitecan in Figure 1F.
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induced by the Top1 inhibitors and/or subsequent repair.  As 
a clinically important class of anticancer drugs, Top1 inhibi-
tors are extensively used to treat various solid tumors such 
as colon and lung cancers.  Occurrence of drug resistance to 
those inhibitors is a serious obstacle to successful therapy in 
the clinic[11].  The differential sensitivity of A cells and N cells 
to SN38 and chimmitecan also suggests that RIP3 could con-
tribute to cellular resistance to Top1 inhibitors.  Actually, we 
detected and found that RIP3 was expressed at high levels in 
cancer cells originated from different human tissues includ-
ing blood (K562), liver (SMMC-7402 and SMMC-7721), colon 
(HCT116), stomach (MKN45), lung (A549), breast (MDA-
MB-468, MDA-MB-231, T47D, and BT549), cervix (HeLa) and 
bone (Rh30) (data not shown).  Inhibition of RIP3 might be an 
alternative approach to circumventing drug resistance.  How-
ever, the exact molecular mechanisms remain to be further 
clarified.  

Taken together, our results demonstrate for the first time 
the differential sensitivity of the RIP3-deficient A cells and the 
RIP3-proficient N cells to Top1 inhibitors, suggesting a poten-
tial new role of RIP3 in Top1 inhibitor-induced DNA damage/
repair and cellular resistance to Top1 inhibitors, probably 
independently of its regulation in the choice of cell death 
modes.  
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